Citation: | Fudong Zhang, Di Wu, Jiaqing He. The Roles of Grain Boundaries in Thermoelectric Transports. Materials Lab 2022, 1, 220012. doi: 10.54227/mlab.20220012 |
Grain boundary scattering was long recognized and widely utilized to regulate the transports of charge carriers and phonons in thermoelectric materials; nevertheless, the understanding of grain boundaries in lots of literatures seems somewhat lopsided and way too simplified, without distinguishing the exact microstructural characters for each individual case. In this perspective, we first review the well-known functions of grain boundaries on the electrical and thermal transport properties based on some representative thermoelectric series. Next, we try to deepen the understanding of the roles of grain boundaries in the following two aspects: (1) whether the grain boundaries are large-angle or small-angle ones, and what the difference between them in affecting electrical/thermal performance is; (2) whether the grain boundaries are clean and sharp as lattice discontinuity defects, if not, how can the grain boundaries as an individual phase affect the thermoelectric transports. At last, we suggest that further investigations engaging more detailed microstructural information of grain boundaries are urgently necessary in order to better realize a positive trade-off between lattice thermal conductivity and electrical power factor for an overall enhanced thermoelectric performance.
1. | D. Wu, L.-D. Zhao, F. Zheng, L. Jin, M. G. Kanatzidis, J. He, Adv. Mater., 2016, 28, 2737 |
2. | B. Qin, L.-D. Zhao, Mat. Lab, 2022, 1, 220004 |
3. | N. Dragoe, Mat. Lab, 2022, 1, 220001 |
4. | T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, X. Zhao, Adv. Mater., 2017, 29, 1605884 |
5. | C. Gayner, Y. Amouyal, Adv. Funct. Mater., 2020, 30, 1901789 |
6. | G. Tan, L. D. Zhao, M. G. Kanatzidis, Chem. Rev., 2016, 116, 12123 |
7. | D. Wu, L. Xie, X. Xu, J. He, Adv. Funct. Mater., 2019, 29, 1806613 |
8. | N. K. Singh, A. Kashyap, A. Soni, Appl. Phys. Lett., 2021, 119, 223903 |
9. | N. K. Singh, A. Soni, Appl. Phys. Lett., 2020, 117, 123901 |
10. | Y. Zheng, T. J. Slade, L. Hu, X. Y. Tan, Y. Luo, Z. Z. Luo, J. Xu, Q. Yan, M. G. Kanatzidis, Chem. Soc. Rev., 2021, 50, 9022 |
11. | G. Chen, T. Zeng, T. Borca-Tasciuc and D. Song, Mater. Sci. Eng. A, 2000, 292, 155 |
12. | P. Das, S. Bathula, S. Gollapudi, Nano Express, 2020, 1, 020036 |
13. | B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science, 2008, 320, 634 |
14. | M. S. Kim, W. J. Lee, K. H. Cho, J. P. Ahn, Y. M. Sung, ACS Nano., 2016, 10, 7197 |
15. | A. Soni, Y. Zhao, L. Yu, M. K. Aik, M. S. Dresselhaus, Q. Xiong, Nano Lett., 2012, 12, 1203 |
16. | S. Kim, K. H. Lee, H. A Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Science, 2015, 348, 109 |
17. | X. Meng, Z. Liu, B. Cui, D. Qin, H. Geng, W. Cai, L. Fu, J. He, Z. Ren, J. Sui, Adv. Energy Mater., 2017, 7, 1602582 |
18. | L. Yang, Z. G. Chen, G. Han, M. Hong, Y. Zou, J. Zou, Nano Energy, 2015, 16, 367 |
19. | P. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G. J. Snyder, L. Chen, Energy Environ. Sci., 2017, 10, 183 |
20. | W. Xie, X. Tang, Y. Yan, Q. Zhang, T. M. Tritt, J. Appl. Phys., 2009, 105, 113713 |
21. | X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, Z. F. Ren, Nano Lett., 2010, 10, 3373 |
22. | Y. Zheng, Q. Zhang, X. Su, H. Xie, S. Shu, T. Chen, G. Tan, Y. Yan, X. Tang, C. Uher, G. J. Snyder, Adv. Energy Mater., 2015, 5, 1401391 |
23. | T. J. Slade, T. P. Bailey, J. A. Grovogui, X. Hua, X. Zhang, J. J. Kuo, I. Hadar, G. J. Snyder, C. Wolverton, V. P. Dravid, C. Uher, M. G. Kanatzidis, Adv. Energy Mater., 2019, 9, 1901377 |
24. | Y. Wu, F. Liu, Q. Zhang, T. Zhu, K. Xia, X. Zhao, J. Mater. Chem. A, 2020, 8, 8455 |
25. | T. J. Slade, J. A. Grovogui, J. Kuo, S. Anand, T. P. Bailey, M. Wood, C. Uher, G. J. Snyder, V. P. Dravid, M. G. Kanatzidis, Energy Environ. Sci., 2020, 13, 1509 |
26. | Q. Qiu, Y. Liu, K. Xia, T. Fang, J. Yu, X. Zhao, T. Zhu, Adv. Energy Mater., 2019, 9, 1803447 |
27. | J. H. Bahk, A. Shakouri, Phys. Rev. B, 2016, 93, 165209 |
28. | J. Martin, L. Wang, L. Chen, G. S. Nolas, Phys. Rev. B, 2009, 79, 115311 |
29. | T. M. Roberts, M. E. Mauel, M. C. Abler, B. K. Makansi, Rev. Sci. Instrum., 2015, 86, 083510 |
30. | H. Mun, K. H. Lee, S. J. Yoo, H. S. Kim, J. Jeong, S. H. Oh, G. J. Snyder, Y. H. Lee, Y. M. Kim, S. W. Kim, Acta Mater., 2018, 159, 266 |
31. | S. Li, Y. Liu, F. Liu, D. He, J. He, J. Luo, Y. Xiao, F. Pan, Nano Energy, 2018, 49, 257 |
32. | Y. Yu, D. S. He, S. Zhang, O. C. Mirédin, T. Schwarz, A. Stoffers, X. Y. Wang, S. Zheng, B. Zhu, C. Scheu, D. Wu, J. Q. He, M. Wuttig, Z. Y. Huang, F. Q. Zu, Nano Energy, 2017, 37, 203 |
33. | J. Y. Hwang, J. Kim, H. S. Kim, S. Kim, K. H. Lee, S. W. Kim, Adv. Energy Mater., 2018, 8, 1800065 |
34. | J. J. Kuo, M. Wood, T. J. Slade, M. G. Kanatzidis, G. J. Snyder, Energy Environ. Sci., 2020, 13, 1250 |
35. | S. Wang, X. Lu, A. Negi, J. He, K. Kim, H. Shao, P. Jiang, J. Liu, Q. Hao, Eng. Sci., 2022, 17, 45 |
36. | J. J. Kuo, Y. Yu, S. D. Kang, O. C. Mirédin, M. Wuttig, G. J. Snyder, Adv. Mater, Adv. Mater.Interfaces, 2019, 6, 1900429 |
37. | J. J. Kuo, S. D. Kang, K. Imasato, H. Tamaki, S. Ohno, T. Kanno, G. J. Snyder, Energy Environ. Sci., 2018, 11, 429 |
38. | A. Soni, Y. Shen, M. Yin, Y. Zhao, L. Yu, X. Hu, Z. Dong, K. A. Khor, M. S. Dresselhaus, Q. Xiong, Nano Lett., 2012, 12, 4305 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
(a)(b) Comparison of BSE images between rough grains in an as-cast ingot and refined grain in a MS sample of the same Bi0.5Sb1.5Te3 composition. Reproduced with permission.[22] Copyright 2014 Wiley-VCH. (c) carrier mobility and PF, (d) T dependence κlat of Bi0.5Sb1.5Te3 ingot and mechanically robust polycrystal by grain refinement [22].
Low-angle grain boundaries. (a)-(e) Periodic Moiré patterns at LAGBs and FFT images of adjacent grains crossing a tilt-type GB. Reproduced with permission.[16] Copyright 2015 American Association for the Advancement of Science. (f)(g) Selected electrical and thermal transport properties of S-MS sample with HAGBs and Te-MS sample with LAGBs[16]. (h) A high-resolution LAGB in Bi0.5Sb1.5Te3 alloy, (i)-(j) GPA mappings, and (k) corresponding FFT images. Reproduced with permission.[32] Copyright 2017 Elsevier.
(a) Equivalent circuits for treating thermal and electrical resistance of grain boundaries. (b) Electrical and thermal transports in conventional use of the Wiedemann-Franz law (Fig. 3(b)-left) and when considering thermal and electrical resistance of grain boundaries in a two-phase model (Fig. 3(b)-right). Reproduced with permission.[34] Copyright 2020 Royal Society of Chemistry. (c)(d) 3D reconstruction of the atom distribution and projected atom density map in n-type Mg3Sb2 by Atom Probe Tomography (APT), the upper-right inset is a scanning electron microscope image. Reproduced with permission.[36] Copyright 2019 Wiley-VCH. (e) Scheme of thermally activated conduction behavior diminishing with increased grain size in Mg3.2Sb1.5Bi0.49Te0.01. (f) Upper limit of the figure-of-merit ZT with different grain size. Reproduced with permission.[37] Copyright 2018 Royal Society of Chemistry.