Qingling Hong, Boqiang Miao, Tianjiao Wang, Fumin Li, Yu Chen. Intermetallic PtTe metallene for formic acid oxidation assisted electrocatalytic nitrate reduction[J]. Energy Lab, 2023, 1(2): 220022. doi: 10.54227/elab.20220022
Citation: Qingling Hong, Boqiang Miao, Tianjiao Wang, Fumin Li, Yu Chen. Intermetallic PtTe metallene for formic acid oxidation assisted electrocatalytic nitrate reduction[J]. Energy Lab, 2023, 1(2): 220022. doi: 10.54227/elab.20220022

RESEARCH ARTICLE

Intermetallic PtTe metallene for formic acid oxidation assisted electrocatalytic nitrate reduction

More Information
  • Corresponding authors: lifuminxs@gmail.com; ndchenyu@gmail.com
  • Development of highly efficient electrocatalysts for selective electroreduction of nitrate is of great significance. In this work, the ultrathin intermetallic platinum-tellurium metallene (PtTe-ML) with atomic thickness is synthesized by simple liquid-phase chemical reduction. The introduction of Te atoms can sharply weaken the catalytic activity of Pt for the hydrogen evolution reaction. And, PtTe-ML exhibits superior catalytic activity for the nitrate reduction reaction (NO3-ERR) than Pt black. In 0.5 M H2SO4 solution, PtTe-ML achieves an effective ammonia (NH3) production rate of 2.32 mg h−1 mgcat−1 and a Faradic efficiency of 95.5% at −0.04 V potential for NO3-ERR. Meanwhile, the entry of Te atom isolates the continuous Pt active site and increases the proportion of the direct dehydrogenation pathway of the formic acid oxidation reaction (FAOR). Therefore, PtTe-ML also exhibits excellent FAOR activity due to the optimization of FAOR pathway. Then, anodic FAOR with low anodic oxidation potential is used to replace the oxygen evolution reaction with slow kinetic, so that the total electrolytic voltage of conventional electrochemical NH3 production can be effectively reduced. Consequently, the bifunctional PtTe-ML electrocatalyst requires only 0.4 V total voltage for FAOR assisted NH3 electroproduction. This work demonstrates a reaction coupling strategy to significantly improve the utilization rate of electric energy in electrochemical synthesis.


  • 加载中
  • 1. T. Ren, K. Ren, M. Wang, M. Liu, Z. Wang, H. Wang, X. Li, L. Wang and Y. Xu, Chem. Eng. J., 2021, 426, 130759
    2. J. Yu, B. Chang, W. Yu, X. Li, D. Wang, Z. Xu, X. Zhang, H. Liu and W. Zhou, Carbon Energy, 2022, 4, 237
    3. P. H. van Langevelde, I. Katsounaros and M. T. M. Koper, Joule, 2021, 5, 290
    4. J. Yao and J. Yan, Sci. China. Chem., 2020, 63, 1737
    5. S. Mukherjee, D. A. Cullen, S. Karakalos, K. Liu, H. Zhang, S. Zhao, H. Xu, K. L. More, G. Wang and G. Wu, Nano Energy, 2018, 48, 217
    6. Q. Yao, J. Chen, S. Xiao, Y. Zhang and X. Zhou, ACS Appl. Mater. Interfaces, 2021, 13, 30458
    7. Y. Sun, W. Wu, L. Yu, S. Xu, Y. Zhang, L. Yu, B. Xia, S. Ding, M. Li, L. Jiang, J. Duan, J. Zhu and S. Chen, Carbon Energy, 2022, 1, 1
    8. Y. Zeng, C. Priest, G. Wang and G. Wu, Small Methods, 2020, 4, 2000672
    9. S. Garcia-Segura, M. Lanzarini-Lopes, K. Hristovski and P. Westerhoff, Appl. Catal. B Environ., 2018, 236, 546
    10. Y. Yao, S. Zhu, H. Wang, H. Li and M. Shao, Angew. Chem. Int. Ed., 2020, 59, 10479
    11. X. Yang, S. Sun, L. Meng, K. Li, S. Mukherjee, X. Chen, J. Lv, S. Liang, H.-Y. Zang, L.-K. Yan and G. Wu, Appl. Catal. B Environ., 2021, 285, 119794
    12. G. A. Attard, J. Souza-Garcia, R. Martinez-Hincapie and J. M. Feliu, J. Catal., 2019, 378, 238
    13. M. Duca, N. Sacre, A. Wang, S. Garbarino and D. Guay, Appl. Catal. B Environ., 2018, 221, 86
    14. Z. Mumtarin, M. M. Rahman, H. M. Marwani and M. A. Hasnat, Electrochim. Acta, 2020, 346, 135994
    15. R. Chauhan and V. C. Srivastava, Chem. Eng. J., 2020, 386, 122065
    16. Z. X. Ge, T. J. Wang, Y. Ding, S. B. Yin, F. M. Li, P. Chen and Y. Chen, Adv. Energy Mater., 2022, 12, 2103916
    17. J.-Y. Zhu, Q. Xue, Y.-Y. Xue, Y. Ding, F.-M. Li, P. Jin, P. Chen and Y. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 14064
    18. J. Li, G. Zhan, J. Yang, F. Quan, C. Mao, Y. Liu, B. Wang, F. Lei, L. Li, A. W. M. Chan, L. Xu, Y. Shi, Y. Du, W. Hao, P. K. Wong, J. Wang, S.-X. Dou, L. Zhang and J. C. Yu, J. Am. Chem. Soc., 2020, 142, 7036
    19. J. Liu, T. Cheng, L. Jiang, A. Kong and Y. Shan, ACS Appl. Mater. Interfaces, 2020, 12, 33186
    20. S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu, L. Li, X. Wu, T. Wu, M. Li, Q. Yang, K. Deng and Z. Quan, Adv. Mater., 2019, 31, 1903683
    21. T. Zhu, Q. Chen, P. Liao, W. Duan, S. Liang, Z. Yan and C. Feng, Small, 2020, 16, 2004526
    22. J. Gao, B. Jiang, C. Ni, Y. Qi, Y. Zhang, N. Oturan and M. A. Oturan, Appl. Catal. B Environ., 2019, 254, 391
    23. I. Katsounaros and G. Kyriacou, Electrochim. Acta, 2008, 53, 5477
    24. M. Bat-Erdene, A. S. R. Bati, J. Qin, H. Zhao, Y. L. Zhong, J. G. Shapter and M. Batmunkh, Adv. Funct. Mater., 2022, 32, 2107280
    25. H. Yang, F. He, J. Shen, Z. Chen, Y. Yao, L. He and Y. Yu, Energy Lab, 2022, 1, 220007
    26. L. Zeng, W. Chen, Q. Zhang, S. Xu, W. Zhang, F. Lv, Q. Huang, S. Wang, K. Yin, M. Li, Y. Yang, L. Gu and S. Guo, ACS Catal., 2022, 12, 11391
    27. H. Yu, T. Zhou, Z. Wang, Y. Xu, X. Li, L. Wang and H. Wang, Angew. Chem. Int. Ed. Engl., 2021, 60, 12027
    28. P. Mirzaei, S. Bastide, A. Aghajani, J. Bourgon, E. Leroy, J. Zhang, Y. Snoussi, A. Bensghaier, O. Hamouma, M. M. Chehimi and C. Cachet-Vivier, Langmuir, 2019, 35, 14428
    29. Y. Xu, K. Ren, T. Ren, M. Wang, M. Liu, Z. Wang, X. Li, L. Wang and H. Wang, Chem. Commun., 2021, 57, 7525
    30. M. Armbrüster, K. Kovnir, M. Behrens, D. Teschner, Y. Grin and R. Schlögl, J. Am. Chem. Soc., 2010, 132, 14745
    31. Y. S. Kang, D. Choi, J. Cho, H.-Y. Park, K.-S. Lee, M. Ahn, I. Jang, T. Park, H. C. Ham and S. J. Yoo, ACS Appl. Energy Mater., 2020, 3, 4226
    32. J. Yu, A. F. Kolln, D. Jing, J. Oh, H. Liu, Z. Qi, L. Zhou, W. Li and W. Huang, ACS Appl. Mater. Interfaces, 2021, 13, 52073
    33. F. Li, Q. Xue, G. Ma, S. Li, M. Hu, H. Yao, X. Wang and Y. Chen, J. Power Sources, 2020, 450, 227615
    34. L. An, H. Yan, B. Li, J. Ma, H. Wei and D. Xia, Nano Energy, 2015, 15, 24
    35. S. Liu, S. Yin, L. Cui, H. Yu, K. Deng, Z. Wang, Y. Xu, L. Wang and H. Wang, Energy Lab, 2022, 1, 220005
    36. T.-J. Wang, H.-Y. Sun, Q. Xue, M.-J. Zhong, F.-M. Li, X. Tian, P. Chen, S.-B. Yin and Y. Chen, Science Bulletin, 2021, 66, 2079
    37. L. Tao, M. Sun, Y. Zhou, M. Luo, F. Lv, M. Li, Q. Zhang, L. Gu, B. Huang and S. Guo, J. Am. Chem. Soc., 2022, 144, 10582
    38. K. Yin, Y. Chao, F. Lv, L. Tao, W. Zhang, S. Lu, M. Li, Q. Zhang, L. Gu, H. Li and S. Guo, J. Am. Chem. Soc., 2021, 143, 10822
    39. T.-J. Wang, Y.-C. Jiang, J.-W. He, F.-M. Li, Y. Ding, P. Chen and Y. Chen, Carbon Energy, 2022, 4, 283
    40. T. Shen, S. Chen, C. Zhang, Y. Hu, E. Ma, Y. Yang, J. Hu and D. Wang, Adv. Funct. Mater., 2022, 32, 2107672
    41. W. Liang, Y. Wang, L. Zhao, W. Guo, D. Li, W. Qin, H. Wu, Y. Sun and L. Jiang, Adv. Mater., 2021, 33, 2100713
    42. H. Wang, W. Wang, Q. Mao, H. Yu, K. Deng, Y. Xu, X. Li, Z. Wang and L. Wang, Chem. Eng. J., 2022, 450, 137995
    43. Q. Xue, X.-Y. Bai, Y. Zhao, Y.-N. Li, T.-J. Wang, H.-Y. Sun, F.-M. Li, P. Chen, P. Jin, S.-B. Yin and Y. Chen, J. Energy Chem., 2022, 65, 94
    44. L. Bu, Q. Shao, Y. Pi, J. Yao, M. Luo, J. Lang, S. Hwang, H. Xin, B. Huang, J. Guo, D. Su, S. Guo and X. Huang, Chem, 2018, 4, 359
    45. K. Kovnir, M. Armbrüs ter, D. Teschner, T. V. Venkov, L. Szentmiklósi, F. C. Jentoft, A. Knop-Gericke, Y. Grin and R. Schlögl, Surf. Sci., 2009, 603, 1784
    46. K. Tonnis, Z. Nan, J. Fang, R. Pavlicek, E. S. DeCastro and A. P. Angelopoulos, ACS Appl. Energy Mater., 2020, 3, 7588
    47. Z. Peng, H. You and H. Yang, Adv. Funct. Mater., 2010, 20, 3734
    48. G.-T. Fu, B.-Y. Xia, R.-G. Ma, Y. Chen, Y.-W. Tang and J.-M. Lee, Nano Energy, 2015, 12, 824
    49. J. Geng, Z. Zhu, X. Bai, F. Li and J. Chen, ACS Appl. Energy Mater., 2020, 3, 1010
    50. S. H. Ahn, Y. Liu and T. P. Moffat, ACS Catal., 2015, 5, 2124
    51. A. Ferre-Vilaplana, J. Victor Perales-Rondon, J. M. Feliu and E. Herrero, ACS Catal., 2015, 5, 645
    52. Y. Xu, Y. Wen, T. Ren, H. Yu, K. Deng, Z. Wang, X. Li, L. Wang and H. Wang, Appl. Catal. B Environ., 2023, 320, 121981
    53. Y. L. Zhao, Y. Liu, Z. J. Zhang, Z. K. Mo, C. Y. Wang and S. Y. Gao, Nano Energy, 2022, 97, 107124
    54. Q. Liu, Q. Liu, L. Xie, Y. Ji, T. Li, B. Zhang, N. Li, B. Tang, Y. Liu, S. Gao, Y. Luo, L. Yu, Q. Kong and X. Sun, ACS Appl. Mater. Interfaces, 2022, 14, 17312
    55. M. Liu, Q. Mao, K. Shi, Z. Wang, Y. Xu, X. Li, L. Wang and H. Wang, ACS Appl. Mater. Interfaces, 2022, 14, 13169
    56. Y. Xu, M. Wang, K. Ren, T. Ren, M. Liu, Z. Wang, X. Li, L. Wang and H. Wang, J. Mater. Chem. A, 2021, 9, 16411
    57. J. Lim, C.-Y. Liu, J. Park, Y.-H. Liu, T. P. Senftle, S. W. Lee and M. C. Hatzell, ACS Catal., 2021, 11, 7568
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  • Supplemental_information-2023-0022-R1
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Information

Article Metrics

Article views(3226) PDF downloads(1196) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint