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Abstract
The launching integrated computational materials engineering (ICME) and materials genome engineering (MGE) has led the transformation of

empirical  and  theoretical  design  paradigm  into  the  rational  computational  one  that  further  provides  the  basis  for  the  data-driven  design

paradigm by integrating the high-throughput techniques in experiments and computations, the big data science with general principles, the in-

formatics with knowledge discovery based on data mining and machine learning, and ultimately enabling the possibility of materials intelligence

design (MID) via artificial intelligence. In this perspective article, we highlight the intelligent solution to acquire the processing-structure-prop-

erty-performance relationship of multilevel-structured materials by emphasizing modularization, automation, standardization, integration and

intelligence, following the hierarchical relationship of data, information, knowledge and wisdom, which is essentially different from the past em-

pirical, theoretical and computational paradigms. The new era of MID is expected to fundamentally reform the material innovation mode through

an integrated infrastructure guided by novel concepts that is radically distinguished from the way of thinking and doing in the past, providing a

perspective scientific vision and direction for future materials design.
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● Main text

With  the  rapid  development  of  modern  materials  model-
ing,  computation  and  simulation,  it  has  gradually  become  a
reality  to  integrate  computational  material  design  into  the
whole  product  system  design[1] and  to  promote  the  genera-
tion of massive data in materials,  and thus the empirical  and
theoretical  design  paradigm  is  transforming  to  the  rational
computational design one, and further to intensively develop
data-driven  design  paradigm  according  to  the  concepts  of
ICME and MGE.[2] To realize the unified contemporary design
of materials and products, ICME is to provide an integration of
computational materials science and product system by com-
bining the material  information and knowledge obtained by
computational  simulation  with  product  analysis  and  pro-
cessing  at  different  scales.[3] Because  of  the  inherent  feature
of hierarchy and heterogeneity of materials from the extreme
range of spatial and temporal scales, the physics of each scale
is  dominated  by  a  set  of  fundamental  microvariables,  which
characterize the collective behavior of those at smaller scales.
As  a  result,  it  requires  to  bridge  multiscale  methods  across
scales,  e.g.,  the  message  passing  approach  and  the  embed-
ding scheme,[4] which depends strongly on the capabilities of
materials  computations & simulations.  To reach the targeted

materials intelligent design (MID), MGE aims to put forward a
solution for the material design through the generation of big
data via high-throughput techniques, the physical and math-
ematic  solutions  to  obtain  materials  information  and  know-
ledge,  and  an  intelligent  expert/decision  system  for  predic-
tion and design, fundamentally triggering the transformation
of scientific and technological innovation mode. In the realiz-
ation  of  this  proposal,  the  high-throughput  computations  &
simulations,  experimental  preparation  &  characterization  are
essential  for  the  establishment  of  materials  database,  which
in  turn  builds  a  foundation  for  data  analysis  &  mining  (e.g.,
machine learning, ML), thus providing physical or mathemat-
ic models through information extraction and knowledge ac-
quisition, and finally promoting the construction of an integ-
rated MID system.

Figure 1 presents a unified research and design strategy of
future material  design,  which brings a new era of  MID by in-
tegrating  the  high-throughput  techniques,  data  science,  in-
formatics with knowledge discovery and artificial intelligence
(AI) with the launching of ICME and MGE.[5–7] As shown in the
bottom-left of Figure 1, to meet the requirements of MID, the
multiscale high-throughput computations & simulations (e.g.,
first  principles  calculations  based  on  density  functional  the-
ory)[8] and  high  throughput  experimental  preparations  &
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characterizations  (e.g.,  combinatorial  chip  technology[9]),
provide  surely  a  basis  for  the  data-driven  design  paradigm.
Such  techniques  are  tied  with  the  idea  that  automate  the
whole process of  calculations and simulations,  as  well  as  the
syntheses  and characterizations  by emphasizing the integra-
tion,  modularization,  automation, standardization,  and paral-
lel  &  concurrent  processing  with  high-efficiency.  So  far  vari-
ous  high  throughput  computation  &  simulation  tools  are

freely available in public,  e.g.,  Materials Project,[10] Automatic
Flow  for  materials  discovery  (AFLOW),[11] SPaMD  Studio[12]

and  meanwhile,  some  representative  data  repositories  have
substantially boosted, including the computational ones such
as  AFLOWLIB  and  Open  Quantum  Materials  Database
(OQMD),[13] as well as those experimental ones, e.g., the High-
Throughput  Experimental  Materials  Database  (HTEM  DB)  of
inorganic materials. [14]
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Fig. 1    The unified research and design strategy of future material design, which brings a new era of MID by integrating the high-throughput
techniques, data science, informatics with knowledge discovery and the artificial intelligence to acquire the processing-structure-property-per-
formance (PSPP) relationship.[5–7]

 
With massive raw data in ready,  as depicted in the middle

of Figure 1,  the  materials  informatics  provides  a  general
framework  for  the  data  analysis  &  mining  of  useful  informa-
tion,  which  may  further  help  the  knowledge-discovery  to
build physical or chemical models, concepts or rules through
exploring the data correlation (i.e.,  linear or  non-linear equa-
tion  with  physical  significance),  e.g.,  material  "fingerprint"
(also  known  as  "descriptor",  i.e.,  the  critical  structural  and/or
physical  parameter  that  depict  a  certain  property  of  the ma-
terials[15]),  or  to  build  various  mathematic  models  based  on
machine  learning  approaches,  e.g.,  artificial  neural  networks
(ANN).[16] The core role of machine learning should be recog-
nized in data mining that is based on mathematics, statistics,
informatics,  visualization  and  other  disciplines,  since  it
provides  the  unreachable  capability  for  physical  modelling
and prediction with consideration of the multiscale complex-
ity  of  materials  behaviors  and  multilevel  approximations  in
computations & simulations. In this aspect, several successful
ML examples include the ML potentials for molecular dynam-
ics  simulations,[17] the  ML  models  of  structure-property  rela-
tionships for property predictions,[18] etc.

By  integrating  the  data  science  and  the  informatics  with
knowledge  discovery,  the  MID  is  feasibly  implemented
through  building  AI  system,  as  presented  in  the  top-right  of

Figure 1.  The  AI  is  generally  termed  as  the  computer
expert/decision system for prediction and inverse design that
applies the physical models, principles and rules, or mathem-
atical  models  obtained  by  machine  learning  yet  cannot  be
clearly expressed. Nevertheless, MID provides a new scientific
vision  for  future  materials  innovations,  thus  is  necessary  to
combine  various  fields  including  the  big  data  science  with
high throughput computational & experimental methods, the
materials informatics with knowledge discovery via data-min-
ing  and  machine  learning,  and  the  artificial  intelligence  sys-
tem through expert/decision system, etc., to promote insight-
ful  interdisciplinary  exchanges  of  idea,  methods,  and results,
in  turn  to  speed  up  future  materials  discovery  by  transform-
ing  material  research  into  an  integrated  intelligent  platform
for material prediction and design.

In  short,  ICME  and  MGE  provide  a  basis  of  novel  concepts
and directions of R&D in the field of material science and en-
gineering  in  recent  years  by  effectively  integrating  high-
throughput computations & simulations, high-throughput ex-
perimental  preparations & characterizations,  the storage and
organization of big data with general principles, the informa-
tion  extraction  and  the  knowledge  discovery  based  on  data
mining  and  machine  learning,  as  well  as  an  artificial  intelli-
gence  system  for  prediction  and  design.  Following  the  hier-
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archical relationship of data, information, knowledge and wis-
dom  (DIKW),[6] the  MID  paradigm  allows  one  to  acquire  the
PSPP  relationship  by  emphasizing  modularization,  automa-
tion,  standardization,  integration and intelligence,  and apply
it  as  the  basis  for  the  rational  materials  design  in  a  faster,
cheaper,  more  accurate  and  intelligent  way.  In  this  new  sci-
entific vision, the material innovation is fundamentally differ-
ent from the way of thinking and doing in the past empirical,
theoretical and computational paradigms, and it needs to be
supported  by  a  whole  new  infrastructure  that  at  least  in-
cludes the integrated frameworks for high-throughput exper-
imentation and high-throughput computation, the robust fa-
cilities  for  big data storage and organization,  the informatics
tools  with  the  capabilities  for  various  data  analysis  and  min-
ing, and an intelligent system for prediction and design. Last
but not least,  big challenges are clearly faced in MID, includ-
ing  the  veracity,  relevance,  completeness,  standardization  of
big  data,  the  automation,  modulation,  and  integration  of
high-throughput  methodologies,  the  efficiency  and  general-
ization of algorithms to build physical and mathematic mod-
els,  and  the  AI  system,  and  a  broad  collaboration  with  suffi-
cient sharing of resources, data, and algorithms, etc. 
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