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Abstract
Two-dimensional (2D) charge density wave (CDW) materials have attracted widespread attention due to their exotic physical properties. Com-

pared to their bulk forms, 2D CDW materials exhibit many excellent features, offering new possibilities for electronic device applications. In this

Perspective we highlight the unique advantages of 2D CDW materials and identify some key challenges which remain to be addressed.
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A charge density wave (CDW) phase is a broken-symmetry
state  where  the  charge  density  acquires  a  periodic  modula-
tion  and  the  atomic  lattice  is  periodically  distorted[1,2].  It  has
long been a research hotspot because of its fascinating phys-
ical  properties  and  great  application  potential  in  electronic
devices  such  as  oscillator  and  memory[3–7].  Many  layered
transition  metal  dichalcogenides  (TMDCs)  including  1T-TaS2,
2H-NbSe2,  1T-TaSe2 and  so  on  are  prototypical  CDW  mate-
rials [8,9]. For example, 1T-TaS2 undergoes a series of first-order
phase  transitions  from  the  high-symmetry  1T  phase  to

 CDW  phase  with  decreasing  of  temperature,
which is considered to be an ideal candidate for applications
of  devices  due  to  its  tunable  CDW  phases[10–18].  In  recent
years,  with the rapid advances  in  fabrication technologies  of
two-dimensional (2D) materials, particular attention has been
paid to the CDW phases in 2D materials[19–21].  To date, CDWs
have been observed down to the monolayer limits of some TM-
DCs[22–25].  Due  to  the  reduced  dimensionality,  the  2D  CDW
phases  show  many  different  features  compared  with  their
bulk  counterparts,  which  makes  them  have  unique  advant-
ages over the three-dimensional (3D) CDW phases in some re-
spects.

First, it was reported that lowering dimensionality is able to
increase the CDW transition temperature (TCDW) below which
the  CDW  phase  survives.  Most  of  the  CDW  phase  transitions
in  the  bulk  TMDCs  occur  at  very  low  temperatures,  making
the application very cumbersome. Therefore, increasing TCDW

is  a  desirable  goal.  Xi et  al. observed TCDW of  2H-NbSe2 strik-
ingly  increases  from 33  K  in  the  bulk  sample  to  145  K  in  the
monolayer,  with  the  3  ×  3  CDW  order  persisting[9].  By  first-

principles  calculations,  Lian et  al. further  revealed  that  the
cost  of  the  lattice  elastic  energy  by  the  CDW  distortions  is
greatly  reduced  in  monolayer  2H-NbSe2 due  to  the  absence
of  interlayer  coupling,  resulting  in  the  increase  of TCDW

[26].  It
was also found that single-layer 1T-TiSe2 shows a 2 × 2 CDW
transition at TCDW = 230 K, which is higher than the bulk TCDW =
200 K[27].
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Second,  because  of  the  dramatic  reduction  of  electronic
screening,  2D  CDW  phases  usually  exhibit  exotic  quantum
phenomena that are not found in their bulk phases. Take 1T-
TaSe2 as  an  example.  At  room  temperature,  bulk  1T-TaSe2 is
stabilized  in  a  commensurate  CDW  phase  and
shows metallicity[28,29]. In the monolayer limit, the 
CDW  phase  is  also  observed.  However,  the  strong  electron
correlations make it become a Mott insulator with unusual or-
bital texture[30].  It is also worth noting that the CDW-Mott in-
sulator  transition  temperature  of  monolayer  1T-TaSe2 is  as
large  as  530  K,  which  is  favorable  to  the  realization  of  CDW-
Mott insulator-based ultrathin nanoelectronic devices operat-
ing at room temperature[31].
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In  some  materials,  the  reduced  dimensionality  even
changes the periodicity of the CDW order. It was experiment-
ally  reported  that  single-layer  1T-VSe2 displays  a 
CDW phase in sharp contrast  to the 4 × 4 CDW phase in the
bulk, with its TCDW of 220 K being twice of the bulk value[32,33].
In addition, bulk 2H-NbS2 displays no CDW due to strong an-
harmonicity, while freestanding 2H-NbS2 monolayer is recon-
structed into an interestingly quantum enhanced 3 × 3 CDW
phase in the 2D limit[34,35]. Recently, monolayer 1T-NbTe2 was
also predicted to have a 4 × 4 stripe-like CDW phase which is
completely different from the bulk 3 × 1 CDW phase[36,37]. The
new emerging CDW orders in the 2D limit endow more pos-
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sibilities  of  finding  novel  properties.  For  instance,  both  the
quantum  spin  Hall  state  and  the  quantum  anomalous  Hall
state can be achieved in the 4 × 4 CDW phase of  monolayer
1T-NbTe2, depending on the choice of the substrate[37].
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Third, 2D CDW phases can be easily modulated by external
stimuli  due  to  their  atomically  thin  structures  and  high  sur-
face-to-volume  ratios.  The  electrostatic  gating  that  can  real-
ize  electrically  tunable  doping  level  of  up  to  1014 electrons/
holes per square centimeter in ultrathin 2D materials and the
external  strain  that  can  be  controllably  introduced  into  2D
materials by various methods such as piezoelectric stretching
have been proved as two effective means of modulating the
2D CDW phases[30,38–40]. Kolekar et al. demonstrated that elec-
tron  doping  will  suppress  the  CDW  phase  in  monolayer  1T-
TiSe2, inducing an electronic phase transition from a semicon-
ducting to a metallic state[41]. Zhang et al. found that when an
in-plane  compressive  strain  is  applied  to  the  CDW  phase  of
monolayer 1T-TaSe2,  it will induce a continuous Mott insulat-
or to charge-transfer insulator and to metal phase transition[30].
The Mott insulator-to-metal  transition can also be realized in
ultrathin 1T-TaS2 via the  C (commensurate) CDW-
NC  (nearly  commensurate)  CDW  phase  transition  driven  by
strain or DC current [42,43].  In addition, varying charge screen-
ing  of  the  2D  materials  by  the  underlying  substrate  also  en-
ables the control  of  CDW. A substantial  increase in TCDW of  ≈

45 K was observed in monolayer 1T-TiSe2 on MoS2 compared
to that on graphite[41]. It is anticipated that the controllability
of 2D CDW phases could open new venues for designing fu-
ture devices.

In  conclusion,  compared  to  their  bulk  forms,  2D  CDW
phases  have  exhibited  excellent  properties  such  as  higher
phase transition temperatures, more exotic electronic proper-
ties and better tunability, etc. (see Figure 1), with tremendous
promise  for  applications  in  fast  and  efficient  memory,  sens-
ing and computing devices.  Although recent  few years  have
witnessed  many  breakthroughs  in  the  2D  CDW  field,  several
challenges remain. (i) The formation mechanisms of 2D CDW,
and  the  interplay  between  2D  CDW  and  related  quantum
states including superconductivity, Mott insulators, and topo-
logical states are still not clear. (ii) The 2D CDW materials stud-
ied now are limited to some TMDCs members, and there is a
plenty  of  room  for  search  and  investigation  of  more  2D  ma-
terials  with  CDW.  (iii)  Developing  effective  strategies  for  tar-
geted modulation of 2D CDW phases are indispensable, in or-
der to satisfy the requirements of specific applications. To ad-
dress  these  challenges,  synergistic  efforts  from  experiments
and  theory  are  highly  required.  It  is  believed  that  2D  CDW
phases will play a crucial role in the development of the new
generation of electronic devices.
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Fig. 1    Schematic of the unique advantages of 2D CDW materials for electronic device applications. Compared to their bulk forms, 2D CDW
materials can exhibit higher phase transition temperatures and more exotic electronic properties such as Mott insulators and topological insu-
lators. They can also be easily modulated by various methods such as strain and doping[30,32,37].
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