Citation: | Xiao Liang, Qiannan Wu, Qianqian Liu, Lina Wang, Mingcheng Zhang, Ke Sun, Yucheng Shen, Hui Chen, Xiaoxin Zou. Developments and challenges of catalytic materials for green hydrogen production[J]. Energy Lab, 2023, 1(2): 220013. doi: 10.54227/elab.20220013 |
Water splitting coupled to renewable power systems is an attractive way to generate green hydrogen and achieve zero carbon emissions, and represents a strategic technology to meet the high demand of carbon-neutral development. Catalysts essentially determine the efficiency and cost of water splitting technologies, and are a class of key materials for green hydrogen production. In this review, we summarize the catalyst developments for the mainstream green hydrogen production technologies, including water electrolysis, water photolysis, and photoelectrocatalytic water splitting. We first present basic catalytic mechanisms of these water splitting pathways, as well as emphasize their current research status and challenges for practical application. We subsequently introduce the recent progress in representative catalysts and design strategies toward these photo(electro)catalytic technologies, paying particular attention to water electrolysis, including alkaline water electrolyzer (AWE), proton exchange membrane water electrolyzer (PEMWE), anion-exchange membrane water electrolyzer (AEMWE) and solid oxide electrolysis cell (SOEC). Finally, we propose future prospects to develop more desirable catalysts for green hydrogen production at a large scale.
1. | S. van Renssen, Nat. Clim. Chang., 2020, 10, 799 |
2. | R. W. Howarth, M. Z. Jacobson, Energy Sci. Eng., 2021, 9, 1676 |
3. | H. Ishaq, I. Dincer, C. Crawford, Int. J. Hydrogen Energy, 2022, 47, 26238 |
4. | G. He, D. S. Mallapragada, A. Bose, C. F. Heuberger-Austin, E. Gençer, Energy Environ. Sci., 2021, 14, 4635 |
5. | X. Zou, Y. Zhang, Chem. Soc. Rev., 2015, 44, 5148 |
6. | N. Armaroli, V. Balzani, ChemSusChem, 2011, 4, 21 |
7. | J. D. Holladay, J. Hu, D. L. King, Y. Wang, Catal. Today, 2009, 139, 244 |
8. | H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou, Adv. Mater., 2020, 32, 2002435 |
9. | J. A. Turner, Science, 2004, 305, 972 |
10. | J. Chi, H. Yu, Chin. J. Catal., 2018, 39, 390 |
11. | A. Kudo, Y. Miseki, Chem. Soc. Rev., 2009, 38, 253 |
12. | E. Vartiainen, C. Breyer, D. Moser, E. Román Medina, C. Busto, G. Masson, E. Bosch, A. Jäger-Waldau, Sol. RRL, 2022, 6, 2100487 |
13. | Y. Li, D. Zhang, W. Qiao, H. Xiang, F. Besenbacher, Y. Li, R. Su, Chem. Synth., 2022, 2, 9 |
14. | C.-F. Fu, X. Wu, J. Yang, Adv. Mater., 2018, 30, 1802106 |
15. | H. Chen, G. Yu, G.-D. Li, T. Xie, Y. Sun, J. Liu, H. Li, X. Huang, D. Wang, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed., 2016, 55, 11442 |
16. | Y.-H. Chiu, T.-H. Lai, M.-Y. Kuo, P.-Y. Hsieh, Y.-J. Hsu, APL Mater., 2019, 7, 080901 |
17. | A. Landman, R. Halabi, P. Dias, H. Dotan, A. Mehlmann, G. E. Shter, M. Halabi, O. Naseraldeen, A. Mendes, G. S. Grader, A. Rothschild, Joule, 2020, 4, 448 |
18. | J.-H. Kim, S. Seo, J.-H. Lee, H. Choi, S. Kim, G. Piao, Y. R. Kim, B. Park, J. Lee, Y. Jung, H. Park, S. Lee, K. Lee, Adv. Funct. Mater., 2021, 31, 2008277 |
19. | K. Zhang, X. Liang, L. Wang, K. Sun, Y. Wang, Z. Xie, Q. Wu, X. Bai, M. S. Hamdy, H. Chen, X. Zou, Nano Res. Energy, 2022, 1, e9120032 |
20. | R. Abbasi, B. P. Setzler, S. Lin, J. Wang, Y. Zhao, H. Xu, B. Pivovar, B. Tian, X. Chen, G. Wu, Y. Yan, Adv. Mater., 2019, 31, 1805876 |
21. | J. Lei, M. Zeng, L. Fu, Chem. Res. Chin. Univ., 2020, 36, 504 |
22. | T. Takata, K. Domen, ACS Energy Lett., 2019, 4, 542 |
23. | Z. Wang, C. Li, K. Domen, Chem. Soc. Rev., 2019, 48, 2109 |
24. | Q. Wang, K. Domen, Chem. Rev., 2020, 120, 919 |
25. | J. Kibsgaard, I. Chorkendorff, Nat. Energy, 2019, 4, 430 |
26. | J. Wang, Y. Gao, H. Kong, J. Kim, S. Choi, F. Ciucci, Y. Hao, S. Yang, Z. Shao, J. Lim, Chem. Soc. Rev., 2020, 49, 9154 |
27. | T. Kou, S. Wang, Y. Li, ACS Mater. Lett., 2021, 3, 224 |
28. | W. Bootluck, T. Chittrakarn, K. Techato, P. Jutaporn, W. Khongnakorn, Catal. Letters, 2022, 152, 2590 |
29. | S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros, Electrochim. Acta, 2012, 82, 384 |
30. | G. Gahleitner, Int. J. Hydrog. Energy, 2013, 38, 2039 |
31. | Ø. Ulleberg, T. Nakken, A. Eté, Int. J. Hydrog. Energy, 2010, 35, 1841 |
32. | M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrog. Energy, 2013, 38, 4901 |
33. | T. Reier, H. N. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater., 2017, 7, 1601275 |
34. | Y. Liu, X. Liang, H. Chen, R. Gao, L. Shi, L. Yang, X. Zou, Chinese J. Catal., 2021, 42, 1054 |
35. | E. Cossar, F. Murphy, E. A. Baranova, J. Chem. Technol. Biotechnol., 2022, 97, 1611 |
36. | P. Shirvanian, A. Loh, S. Sluijter, X. Li, Electrochem. Commun., 2021, 132, 107140 |
37. | A. Carbone, S. C. Zignani, I. Gatto, S. Trocino, A. S. Aricò, Int. J. Hydrog. Energy, 2020, 45, 9285 |
38. | S. Y. Gómez, D. Hotza, Renew Sust. Energ. Rev., 2016, 61, 155 |
39. | Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, J. Zhang, Chem. Soc. Rev., 2017, 46, 1427 |
40. | W. Dönitz, E. Erdle, Int. J. Hydrog. Energy, 1985, 10, 291 |
41. | O. A. Marina, L. R. Pederson, M. C. Williams, G. W. Coffey, K. D. Meinhardt, C. D. Nguyen, E. C. Thomsen, Journal of The Electrochemical Society, 2007, 154, B452 |
42. | J. Suntivich, J. May Kevin, A. Gasteiger Hubert, B. Goodenough John, Y. Shao-Horn, Science, 2011, 334, 1383 |
43. | A. Fujishima, K. Honda, Nature, 1972, 238, 37 |
44. | J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharp, S. Ardo, Energy Environ. Sci., 2015, 8, 2811 |
45. | C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, Chem. Soc. Rev., 2017, 46, 4645 |
46. | Y. Zhao, C. Ding, J. Zhu, W. Qin, X. Tao, F. Fan, R. Li, C. Li, Angew. Chem. Int. Ed., 2020, 59, 9653 |
47. | S. A. Grigoriev, M. S. Mamat, K. A. Dzhus, G. S. Walker, P. Millet, Int. J. Hydrogen Energy, 2011, 36, 4143 |
48. | D. V. Esposito, S. T. Hunt, Y. C. Kimmel, J. G. Chen, J. Am. Chem. Soc., 2012, 134, 3025 |
49. | J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, Y. Li, Y. Gogotsi, G. Wang, Nat. Catal., 2018, 1, 985 |
50. | D. Liu, X. Li, S. Chen, H. Yan, C. Wang, C. Wu, Y. A. Haleem, S. Duan, J. Lu, B. Ge, P. M. Ajayan, Y. Luo, J. Jiang, L. Song, Nat. Energy, 2019, 4, 512 |
51. | J. Zhu, Y. Tu, L. Cai, H. Ma, Y. Chai, L. Zhang, W. Zhang, Small, 2022, 18, 2104824 |
52. | J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Nørskov, Nat. Mater., 2006, 5, 909 |
53. | Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R. O. Ritchie, Q. Yu, Nature, 2019, 574, 223 |
54. | P. Xie, Y. Yao, Z. Huang, Z. Liu, J. Zhang, T. Li, G. Wang, R. Shahbazian-Yassar, L. Hu, C. Wang, Nat. Commun., 2019, 10, 4011 |
55. | D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota, H. Kitagawa, J. Am. Chem. Soc., 2020, 142, 13833 |
56. | G. Feng, F. Ning, J. Song, H. Shang, K. Zhang, Z. Ding, P. Gao, W. Chu, D. Xia, J. Am. Chem. Soc., 2021, 143, 17117 |
57. | T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science, 2007, 317, 100 |
58. | B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc., 2005, 127, 5308 |
59. | L.-L. Feng, G.-D. Li, Y. Liu, Y. Wu, H. Chen, Y. Wang, Y.-C. Zou, D. Wang, X. Zou, ACS Appl. Mater. Interfaces, 2015, 7, 980 |
60. | Y. Chen, G. Yu, W. Chen, Y. Liu, G.-D. Li, P. Zhu, Q. Tao, Q. Li, J. Liu, X. Shen, H. Li, X. Huang, D. Wang, T. Asefa, X. Zou, J. Am. Chem. Soc., 2017, 139, 12370 |
61. | Q. Li, L. Wang, X. Ai, H. Chen, J. Zou, G.-D. Li, X. Zou, Chem. Commun., 2020, 56, 13983 |
62. | Q. Li, X. Zou, X. Ai, H. Chen, L. Sun, X. Zou, Adv. Energy Mater., 2019, 9, 1803369 |
63. | Y. Zhu, G. Chen, Y. Zhong, W. Zhou, Z. Shao, Adv. Sci., 2018, 5, 1700603 |
64. | Y. Liu, G. Yu, G.-D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed., 2015, 54, 10752 |
65. | L. A. King, M. A. Hubert, C. Capuano, J. Manco, N. Danilovic, E. Valle, T. R. Hellstern, K. Ayers, T. F. Jaramillo, Nat. Nanotechnol., 2019, 14, 1071 |
66. | N. Mamaca, E. Mayousse, S. Arrii-Clacens, T. W. Napporn, K. Servat, N. Guillet, K. B. Kokoh, Appl. Catal. B, 2012, 111−112, 376 |
67. | R. Adams, R. Shriner, J. Am. Chem. Soc., 1923, 45, 2171 |
68. | R. E. Fuentes, J. Farell, J. W. Weidner, Electrochem. Solid-State Lett., 2011, 14, E5 |
69. | S. Siracusano, V. Baglio, A. Di Blasi, N. Briguglio, A. Stassi, R. Ornelas, E. Trifoni, V. Antonucci, A. S. Aricò, Int. J. Hydrogen Energy, 2010, 35, 5558 |
70. | E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, E. Budevski, Electrochim. Acta, 2007, 52, 3889 |
71. | C. A. Angelucci, M. D’Villa Silva, F. C. Nart, Electrochim. Acta, 2007, 52, 7293 |
72. | E. Rasten, G. Hagen, R. Tunold, Electrochim. Acta, 2003, 48, 3945 |
73. | S. Geiger, O. Kasian, B. R. Shrestha, A. M. Mingers, K. J. J. Mayrhofer, S. Cherevko, J. Electrochem. Soc., 2016, 163, F3132 |
74. | V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, C. Massué, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer, M. T. Greiner, J. Allan, M. Hashagen, G. Weinberg, S. Piccinin, M. Hävecker, A. Knop-Gericke, R. Schlögl, Surf. Interface Anal., 2016, 48, 261 |
75. | A. S. Gago, P. Lettenmeier, S. Stiber, A. S. Ansar, L. Wang, K. A. Friedrich, ECS Trans., 2018, 85, 3 |
76. | E. Willinger, C. Massué, R. Schlögl, M. G. Willinger, J. Am. Chem. Soc., 2017, 139, 12093 |
77. | M. Bernicke, E. Ortel, T. Reier, A. Bergmann, J. Ferreira de Araujo, P. Strasser, R. Kraehnert, ChemSusChem, 2015, 8, 1908 |
78. | S. Cherevko, T. Reier, A. R. Zeradjanin, Z. Pawolek, P. Strasser, K. J. J. Mayrhofer, Electrochem. Commun., 2014, 48, 81 |
79. | B.-J. Kim, D. F. Abbott, X. Cheng, E. Fabbri, M. Nachtegaal, F. Bozza, I. E. Castelli, D. Lebedev, R. Schäublin, C. Copéret, T. Graule, N. Marzari, T. J. Schmidt, ACS Catal., 2017, 7, 3245 |
80. | S. Siracusano, N. Van Dijk, E. Payne-Johnson, V. Baglio, A. S. Aricò, Appl. Catal. , B, 2015, 164, 488 |
81. | G. Jiang, H. Yu, J. Hao, J. Chi, Z. Fan, D. Yao, B. Qin, Z. Shao, J. Energy Chem., 2019, 39, 23 |
82. | C. Spöri, L. J. Falling, M. Kroschel, C. Brand, A. Bonakdarpour, S. Kühl, D. Berger, M. Gliech, T. E. Jones, D. P. Wilkinson, P. Strasser, ACS Appl. Mater. Interfaces, 2021, 13, 3748 |
83. | F. Zhao, B. Wen, W. Niu, Z. Chen, C. Yan, A. Selloni, C. G. Tully, X. Yang, B. E. Koel, J. Am. Chem. Soc., 2021, 143, 15616 |
84. | E. Oakton, D. Lebedev, M. Povia, D. F. Abbott, E. Fabbri, A. Fedorov, M. Nachtegaal, C. Copéret, T. J. Schmidt, ACS Catal., 2017, 7, 2346 |
85. | C. Hao, H. Lv, Q. Zhao, B. Li, C. Zhang, C. Mi, Y. Song, J. Ma, Int. J. Hydrogen Energy, 2017, 42, 9384 |
86. | S. Zhao, A. Stocks, B. Rasimick, K. More, H. Xu, J. Electrochem. Soc., 2018, 165, F82 |
87. | Z. Shi, J. Li, J. Jiang, Y. Wang, X. Wang, Y. Li, L. Yang, Y. Chu, J. Bai, J. Yang, J. Ni, Y. Wang, L. Zhang, Z. Jiang, C. Liu, J. Ge, W. Xing, Angew. Chem. Int. Ed., 2022, 61, e202212341 |
88. | L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov, T. F. Jaramillo, Science, 2016, 353, 1011 |
89. | Q. Zhang, H. Chen, L. Yang, X. Liang, L. Shi, Q. Feng, Y. Zou, G.-D. Li, X. Zou, Chin. J. Catal., 2022, 43, 885 |
90. | L. Yang, G. Yu, X. Ai, W. Yan, H. Duan, W. Chen, X. Li, T. Wang, C. Zhang, X. Huang, J.-S. Chen, X. Zou, Nat. Commun., 2018, 9, 5236 |
91. | H. Chen, L. Shi, X. Liang, L. Wang, T. Asefa, X. Zou, Angew. Chem. Int. Ed., 2020, 59, 19654 |
92. | S. Hao, M. Liu, J. Pan, X. Liu, X. Tan, N. Xu, Y. He, L. Lei, X. Zhang, Nat. Commun., 2020, 11, 5368 |
93. | A. Li, H. Ooka, N. Bonnet, T. Hayashi, Y. Sun, Q. Jiang, C. Li, H. Han, R. Nakamura, Angew. Chem. Int. Ed., 2019, 58, 5054 |
94. | F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong, Adv. Mater., 2017, 29, 1606570 |
95. | Q. Xiong, X. Zhang, H. Wang, G. Liu, G. Wang, H. Zhang, H. Zhao, Chem. Commun., 2018, 54, 3859 |
96. | F. M. Sapountzi, J. M. Gracia, C. J. Weststrate, H. O. A. Fredriksson, J. W. Niemantsverdriet, Prog. Energy Combust. Sci., 2017, 58, 1 |
97. | Y. Zheng, Y. Jiao, A. Vasileff, S.-Z. Qiao, Angew. Chem. Int. Ed., 2018, 57, 7568 |
98. | M. Bodner, A. Hofer, V. Hacker, WIREs Energy Environ., 2015, 4, 365 |
99. | K. Zeng, D. Zhang, Prog. Energy Combust. Sci., 2010, 36, 307 |
100. | J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao, C. Wei, Z. J. Xu, Nano-Micro Lett., 2018, 10, 75 |
101. | M. Zhou, Q. Weng, Z. I. Popov, Y. Yang, L. Y. Antipina, P. B. Sorokin, X. Wang, Y. Bando, D. Golberg, ACS Nano, 2018, 12, 4148 |
102. | Y. Li, T. Wang, M. Asim, L. Pan, R. Zhang, Z.-F. Huang, Z. Chen, C. Shi, X. Zhang, J.-J. Zou, Trans. Tianjin Univ., 2022, 28, 163 |
103. | J. Balej, J. Divisek, H. Schmitz, J. Mergel, Journal of Applied Electrochemistry, 1992, 22, 711 |
104. | S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, Y. Kiros, Int. J. Hydrogen Energy, 2013, 38, 11496 |
105. | E. J. Podlaha, D. Landolt, J. Electrochem. Soc., 1996, 143, 885 |
106. | T. Wang, X. Cao, L. Jiao, eScience, 2021, 1, 69 |
107. | M. Plata-Torres, A. M. Torres-Huerta, M. A. Domínguez-Crespo, E. M. Arce-Estrada, C. Ramírez-Rodríguez, Int. J. Hydrogen Energy, 2007, 32, 4142 |
108. | N. I. Andersen, A. Serov, P. Atanassov, Appl. Catal. B, 2015, 163, 623 |
109. | F. Song, X. Hu, Nat. Commun., 2014, 5, 4477 |
110. | X. Chen, M. Yu, Z. Yan, W. Guo, G. Fan, Y. Ni, J. Liu, W. Zhang, W. Xie, F. Cheng, J. Chen, CCS Chem., 2020, 3, 675 |
111. | R. Chen, S.-F. Hung, D. Zhou, J. Gao, C. Yang, H. Tao, H. B. Yang, L. Zhang, L. Zhang, Q. Xiong, H. M. Chen, B. Liu, Adv. Mater., 2019, 31, 1903909 |
112. | D. Y. Chung, P. P. Lopes, P. Farinazzo Bergamo Dias Martins, H. He, T. Kawaguchi, P. Zapol, H. You, D. Tripkovic, D. Strmcnik, Y. Zhu, S. Seifert, S. Lee, V. R. Stamenkovic, N. M. Markovic, Nat. Energy, 2020, 5, 222 |
113. | Y. Zuo, Y. Liu, J. Li, R. Du, X. Han, T. Zhang, J. Arbiol, N. J. Divins, J. Llorca, N. Guijarro, K. Sivula, A. Cabot, Chem. Mater., 2019, 31, 7732 |
114. | X. Zou, Y. Wu, Y. Liu, D. Liu, W. Li, L. Gu, H. Liu, P. Wang, L. Sun, Y. Zhang, Chem, 2018, 4, 1139 |
115. | H. Zhang, W. Zhou, J. Dong, X. F. Lu, X. W. Lou, Energy Environ. Sci., 2019, 12, 3348 |
116. | X. Ding, W. Li, H. Kuang, M. Qu, M. Cui, C. Zhao, D.-C. Qi, F. E. Oropeza, K. H. L. Zhang, Nanoscale, 2019, 11, 23217 |
117. | L.-A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci., 2015, 8, 2347 |
118. | M. Shalom, D. Ressnig, X. Yang, G. Clavel, T. P. Fellinger, M. Antonietti, J. Mater. Chem. A, 2015, 3, 8171 |
119. | F. Guo, Y. Wu, H. Chen, Y. Liu, L. Yang, X. Ai, X. Zou, Energy Environ. Sci., 2019, 12, 684 |
120. | X. Xie, L. Du, L. Yan, S. Park, Y. Qiu, J. Sokolowski, W. Wang, Y. Shao, Adv. Funct. Mater., 2022, 32, 2110036 |
121. | B. Zhang, L. Wang, Z. Cao, S. M. Kozlov, F. P. García de Arquer, C. T. Dinh, J. Li, Z. Wang, X. Zheng, L. Zhang, Y. Wen, O. Voznyy, R. Comin, P. De Luna, T. Regier, W. Bi, E. E. Alp, C.-W. Pao, L. Zheng, Y. Hu, Y. Ji, Y. Li, Y. Zhang, L. Cavallo, H. Peng, E. H. Sargent, Nat. Catal., 2020, 3, 985 |
122. | Q. Wen, K. Yang, D. Huang, G. Cheng, X. Ai, Y. Liu, J. Fang, H. Li, L. Yu, T. Zhai, Adv. Energy Mater., 2021, 11, 2102353 |
123. | M. Gong, H. Dai, Nano Res., 2015, 8, 23 |
124. | H. Chen, J. Li, Y. Shen, W. Jiao, J. Wang, Y. Zou, X. Zou, Appl. Catal. B, 2022, 316, 121605 |
125. | Y. Liu, X. Liang, L. Gu, Y. Zhang, G.-D. Li, X. Zou, J.-S. Chen, Nat. Commun., 2018, 9, 2609 |
126. | L. Guo, X. Liu, Z. He, Z. Chen, Z. Zhang, L. Pan, Z.-F. Huang, X. Zhang, Y. Fang, J.-J. Zou, ACS Sus. Chem. Eng., 2022, 10, 9956 |
127. | W. Guo, J. Kim, H. Kim, S. H. Ahn, Int. J. Energy Research, 2021, 45, 1918 |
128. | T. Zhao, S. Wang, Y. Li, C. Jia, Z. Su, D. Hao, B.-j. Ni, Q. Zhang, C. Zhao, Small, 2022, 18, 2204758 |
129. | Y. S. Park, J. H. Lee, M. J. Jang, J. Jeong, S. M. Park, W.-S. Choi, Y. Kim, J. Yang, S. M. Choi, Int. J. Hydrogen Energy, 2020, 45, 36 |
130. | S. Sankar, S. Roby, H. Kuroki, S. Miyanishi, T. Tamaki, G. M. Anilkumar, T. Yamaguchi, ACS Sus. Chem. Eng., 2023, 11, 854 |
131. | Y. Zhao, M. Sun, Q. Wen, S. Wang, S. Han, L. Huang, G. Cheng, Y. Liu, L. Yu, J. Mater. Chem. A, 2022, 10, 10209 |
132. | J. Lee, H. Jung, Y. S. Park, N. Kwon, S. Woo, N. C. S. Selvam, G. S. Han, H. S. Jung, P. J. Yoo, S. M. Choi, J. W. Han, B. Lim, Appl. Catal. B, 2021, 294, 120246 |
133. | Y.-Y. Chen, Y. Zhang, W.-J. Jiang, X. Zhang, Z. Dai, L.-J. Wan, J.-S. Hu, ACS Nano, 2016, 10, 8851 |
134. | X. Chen, J. Qi, P. Wang, C. Li, X. Chen, C. Liang, Electrochim. Acta, 2018, 273, 239 |
135. | S. Jing, L. Zhang, L. Luo, J. Lu, S. Yin, P. K. Shen, P. Tsiakaras, Appl. Catal. B, 2018, 224, 533 |
136. | M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc., 2013, 135, 8452 |
137. | C.-W. Tung, Y.-Y. Hsu, Y.-P. Shen, Y. Zheng, T.-S. Chan, H.-S. Sheu, Y.-C. Cheng, H. M. Chen, Nat. Commun., 2015, 6, 8106 |
138. | D. Chen, Y. S. Park, F. Liu, L. Fang, C. Duan, Chem. Eng. J., 2023, 452, 139105 |
139. | H. Koshikawa, H. Murase, T. Hayashi, K. Nakajima, H. Mashiko, S. Shiraishi, Y. Tsuji, ACS Catal., 2020, 10, 1886 |
140. | W. Jiang, A. Y. Faid, B. F. Gomes, I. Galkina, L. Xia, C. M. S. Lobo, M. Desmau, P. Borowski, H. Hartmann, A. Maljusch, A. Besmehn, C. Roth, S. Sunde, W. Lehnert, M. Shviro, Adv. Fun. Mater., 2022, 32, 2203520 |
141. | Y. S. Park, M. J. Jang, J. Jeong, S. M. Park, X. Wang, M. H. Seo, S. M. Choi, J. Yang, ACS Sus. Chem. Eng., 2020, 8, 2344 |
142. | L. Wan, J. Liu, Z. Xu, Q. Xu, M. Pang, P. Wang, B. Wang, Small, 2022, 18, 2200380 |
143. | Z. Cai, P. Wang, J. Zhang, A. Chen, J. Zhang, Y. Yan, X. Wang, Adv. Mater., 2022, 34, 2110696 |
144. | E. Ioannidou, C. Neofytidis, L. Sygellou, D. K. Niakolas, Appl. Catal. B, 2018, 236, 253 |
145. | Y. Zheng, Z. Chen, J. Zhang, Electro. Energy Rev., 2021, 4, 508 |
146. | M. A. Laguna-Bercero, J. Power Sources, 2012, 203, 4 |
147. | H. S. Hong, U.-S. Chae, S.-T. Choo, J. Alloys Compd., 2008, 449, 331 |
148. | J. Yu, H. J. Men, Y. M. Qu, N. Tian, Solid State Ion., 2020, 346, 115203 |
149. | R. K. Sharma, M. Burriel, L. Dessemond, J. M. Bassat, E. Djurado, J. Mater. Chem. A, 2016, 4, 12451 |
150. | C. Xu, S. Zhen, R. Ren, H. Chen, W. Song, Z. Wang, W. Sun, K. Sun, Chem. Commun., 2019, 55, 8009 |
151. | S. B. Adler, Chem. Rev., 2004, 104, 4791 |
152. | C. Graves, S. D. Ebbesen, S. H. Jensen, S. B. Simonsen, M. B. Mogensen, Nat. Mater., 2015, 14, 239 |
153. | A. Hauch, S. D. Ebbesen, S. H. Jensen, M. Mogensen, J. Mater. Chem., 2008, 18, 2331 |
154. | M. Ni, M. K. H. Leung, D. Y. C. Leung, Int. J. Hydrogen Energy, 2008, 33, 2337 |
155. | P. Prasopchokkul, P. Seeharaj, P. Kim-Lohsoontorn, Int. J. Hydrogen Energy, 2021, 46, 7023 |
156. | X. Zhang, J. Motuzas, S. Liu, J. C. Diniz da Costa, Sep. Purif. Technol., 2017, 189, 399 |
157. | N. Ai, S. He, N. Li, Q. Zhang, W. D. A. Rickard, K. Chen, T. Zhang, S. P. Jiang, J. Power Sources, 2018, 384, 125 |
158. | Z. Ma, Y. Li, Y. Zheng, W. Li, X. Chen, X. Sun, X. Chen, J. Zhou, Ceram. Int., 2021, 47, 23350 |
159. | T. Wu, W. Zhang, Y. Li, Y. Zheng, B. Yu, J. Chen, X. Sun, Adv. En. Mater., 2018, 8, 1802203 |
160. | R. Yang, Y. Tian, Y. Liu, J. Pu, B. Chi, J. Rare Earths, 2022, |
161. | H. Shimada, T. Yamaguchi, H. Kishimoto, H. Sumi, Y. Yamaguchi, K. Nomura, Y. Fujishiro, Nat. Commun., 2019, 10, 5432 |
162. | J. Cao, Y. Li, Y. Zheng, S. Wang, W. Zhang, X. Qin, G. Geng, B. Yu, Adv. En. Mater., 2022, 12, 2200899 |
163. | X. Tao, Y. Zhao, S. Wang, C. Li, R. Li, Chem. Soc. Rev., 2022, 51, 3561 |
164. | D. M. Fabian, S. Hu, N. Singh, F. A. Houle, T. Hisatomi, K. Domen, F. E. Osterloh, S. Ardo, Energy Environ. Sci., 2015, 8, 2825 |
165. | H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082 |
166. | T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature, 2020, 581, 411 |
167. | F. Wang, X. Liu, J. Am. Chem. Soc., 2008, 130, 5642 |
168. | X. Zhang, F. Wang, H. Huang, H. Li, X. Han, Y. Liu, Z. Kang, Nanoscale, 2013, 5, 2274 |
169. | X. Li, Z. Li, J. Yang, Phys. Rev. Lett., 2014, 112, 018301 |
170. | M. Li, P. Li, K. Chang, T. Wang, L. Liu, Q. Kang, S. Ouyang, J. Ye, Chem. Commun., 2015, 51, 7645 |
171. | S. Ouyang, J. Ye, J. Am. Chem. Soc., 2011, 133, 7757 |
172. | K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, J. Am. Chem. Soc., 2005, 127, 8286 |
173. | A. J. Nozik, Appl. Phys. Lett., 1976, 29, 150 |
174. | J. C. Yu, L. Wu, J. Lin, P. Li, Q. Li, Chem. Commun., 2003, 1552 |
175. | C. Wang, C. Shao, X. Zhang, Y. Liu, Inorg. Chem., 2009, 48, 7261 |
176. | M. Shang, W. Wang, L. Zhang, S. Sun, L. Wang, L. Zhou, J. Phys. Chem. C, 2009, 113, 14727 |
177. | D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma, G. Li, C. Li, Chem. Eur. J, 2011, 17, 1275 |
178. | R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Nat. Commun., 2013, 4, 1432 |
179. | K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe, H. Arakawa, Chem. Phys. Lett., 1997, 277, 387 |
180. | K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, T. Setoyama, T. Teranishi, K. Domen, Angew. Chem. Int. Ed., 2010, 49, 4096 |
181. | Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, K. Domen, Joule, 2018, 2, 509 |
182. | H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature, 2021, 598, 304 |
183. | M. R. Shaner, H. A. Atwater, N. S. Lewis, E. W. McFarland, Energy Environ. Sci., 2016, 9, 2354 |
184. | B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. Wang, E. Miller, T. F. Jaramillo, Energy Environ. Sci., 2013, 6, 1983 |
185. | Q. Wu, X. Liang, H. Chen, L. Yang, T. Xie, X. Zou, CrystEngComm, 2022, 24, 2251 |
186. | C. Ros, T. Andreu, J. R. Morante, J. Mater. Chem. A, 2020, 8, 10625 |
187. | T. J. Jacobsson, V. Fjallstrom, M. Edoff, T. Edvinsson, Energy Environ. Sci., 2014, 7, 2056 |
188. | A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne, J. A. Glasscock, Int. J. Hydrog. Energy, 2006, 31, 1999 |
189. | D. Kong, J. Qi, D. Liu, X. Zhang, L. Pan, J. Zou, Trans. Tianjin Univ., 2019, 25, 340 |
190. | S. Cho, J.-W. Jang, K.-H. Lee, J. S. Lee, APL Mater., 2014, 2, 010703 |
191. | G. Zheng, J. Wang, H. Liu, V. Murugadoss, G. Zu, H. Che, C. Lai, H. Li, T. Ding, Q. Gao, Z. Guo, Nanoscale, 2019, 11, 18968 |
192. | J. H. Kim, J. W. Jang, H. J. Kang, G. Magesh, J. Y. Kim, J. H. Kim, J. Lee, J. S. Lee, J. Catal, 2014, 317, 126 |
193. | J. H. Kim, J. S. Lee, Adv. Mater., 2019, 31, e1806938 |
194. | I. S. Cho, C. H. Lee, Y. Feng, M. Logar, P. M. Rao, L. Cai, D. R. Kim, R. Sinclair, X. Zheng, Nat. Commun., 2013, 4, 1723 |
195. | S. W. Shin, J. Y. Lee, K.-S. Ahn, S. H. Kang, J. H. Kim, J. Phys. Chem. C, 2015, 119, 13375 |
196. | H.-i. Kim, D. Monllor-Satoca, W. Kim, W. Choi, Energy Environ. Sci., 2015, 8, 247 |
197. | C. Cheng, H. Wang, J. Li, H. Yang, A. Xie, P. Chen, S. Li, F. Huang, Y. Shen, Electrochim. Acta, 2014, 146, 378 |
198. | Q. Liu, D. Ding, C. Ning, X. Wang, Int. J. Hydrog. Energy, 2015, 40, 2107 |
199. | H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, Y. Xie, H. Gu, F. Huang, J. Mater. Chem. A, 2014, 2, 8612 |
200. | Z. W. Seh, S. Liu, M. Low, S.-Y. Zhang, Z. Liu, A. Mlayah, M.-Y. Han, Adv. Mater., 2012, 24, 2310 |
201. | Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B. C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y.-J. Hsu, Y. Li, Nano Lett., 2013, 13, 3817 |
202. | Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, P. Wang, Nano Lett., 2013, 13, 14 |
203. | X. Jiang, M. Sun, Z. Chen, J. Jing, C. Feng, J. Alloys Compd., 2020, 816, 152533 |
204. | J. Hensel, G. Wang, Y. Li, J. Z. Zhang, Nano Lett., 2010, 10, 478 |
205. | Y.-L. Lee, C.-F. Chi, S.-Y. Liau, Chem. Mater., 2010, 22, 922 |
206. | J. A. Seabold, K.-S. Choi, Chem. Mater., 2011, 23, 1105 |
207. | S. D. Tilley, M. Cornuz, K. Sivula, M. Gratzel, Angew. Chem. Int. Ed., 2010, 49, 6405 |
208. | P. Dias, L. Andrade, A. Mendes, Nano Energy, 2017, 38, 218 |
209. | Q. Rui, L. Wang, Y. Zhang, C. Feng, B. Zhang, S. Fu, H. Guo, H. Hu, Y. Bi, J. Mater. Chem. A, 2018, 6, 7021 |
210. | G. Wang, B. Wang, C. Su, D. Li, L. Zhang, R. Chong, Z. Chang, J. Catal, 2018, 359, 287 |
211. | K.-Y. Yoon, H.-J. Ahn, M.-J. Kwak, S.-I. Kim, J. Park, J.-H. Jang, J. Mater. Chem. A, 2016, 4, 18730 |
212. | A. Liao, H. He, L. Tang, Y. Li, J. Zhang, J. Chen, L. Chen, C. Zhang, Y. Zhou, Z. Zou, ACS Appl. Mater. Interfaces, 2018, 10, 10141 |
213. | Z. Fu, T. Jiang, Z. Liu, D. Wang, L. Wang, T. Xie, Electrochim. Acta, 2014, 129, 358 |
214. | D. Chen, Z. Liu, ChemSusChem, 2018, 11, 3438 |
215. | Z. Luo, C. Li, S. Liu, T. Wang, J. Gong, Chem. Sci., 2017, 8, 91 |
216. | H. Chai, L. Gao, P. Wang, F. Li, G. Hu, J. Jin, Appl. Catal. B, 2022, 305, 121011 |
217. | Y. Wang, T. Yu, X. Chen, H. Zhang, S. Ouyang, Z. Li, J. Ye, Z. Zou, J. Phys. D, 2007, 40, 3925 |
218. | Z. Luo, C. Li, D. Zhang, T. Wang, J. Gong, Chem. Commun., 2016, 52, 9013 |
219. | Y. Li, Q. Wu, Y. Chen, R. Zhang, C. Li, K. Zhang, M. Li, Y. Lin, D. Wang, X. Zou, T. Xie, Appl. Catal. B, 2021, 290, 120058 |
220. | C. Li, T. Wang, Z. Luo, S. Liu, J. Gong, Small, 2016, 12, 3415 |
221. | Q. Wu, Q. Bu, S. Li, Y. Lin, X. Zou, D. Wang, T. Xie, J. Alloys Compd., 2019, 803, 1105 |
222. | D. Chen, Z. Liu, Z. Guo, M. Ruan, W. Yan, ChemSusChem, 2019, 12, 3286 |
223. | Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, D. Wang, J. Am. Chem. Soc., 2012, 134, 5508 |
224. | T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev., 2014, 43, 7520 |
225. | Y. Li, L. Zhang, A. Torres-Pardo, J. M. Gonzalez-Calbet, Y. Ma, P. Oleynikov, O. Terasaki, S. Asahina, M. Shima, D. Cha, L. Zhao, K. Takanabe, J. Kubota, K. Domen, Nat. Commun., 2013, 4, 2566 |
226. | G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han, C. Li, Angew. Chem. Int. Ed., 2014, 53, 7295 |
227. | J. Fu, Z. Fan, M. Nakabayashi, H. Ju, N. Pastukhova, Y. Xiao, C. Feng, N. Shibata, K. Domen, Y. Li, Nat. Commun., 2022, 13, 729 |
228. | H. Hajibabaei, D. J. Little, A. Pandey, D. Wang, Z. Mi, T. W. Hamann, ACS Appl. Mater. Interfaces, 2019, 11, 15457 |
229. | L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, Y. Yu, J. Phys. Chem. C, 2008, 112, 18916 |
230. | C. M. McShane, K.-S. Choi, J. Am. Chem. Soc., 2009, 131, 2561 |
231. | H. S. Jang, S. J. Kim, K. S. Choi, Small, 2010, 6, 2183 |
232. | C.-C. Hu, J.-N. Nian, H. Teng, Sol. Energy Mater Sol. Cells, 2008, 92, 1071 |
233. | A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Nat. Mater., 2011, 10, 456 |
234. | Q. Yang, J. Du, X. Nie, D. Yang, L. Bian, L. Yang, F. Dong, H. He, Y. Zhou, H. Yang, ACS Catal., 2021, 11, 1242 |
235. | B. He, F. Zhao, P. Yi, J. Huang, Y. Wang, S. Zhao, Z. Li, Y. Zhao, X. Liu, ACS Appl. Mater. Interfaces, 2021, 13, 48901 |
236. | G. Zafeiropoulos, P. Varadhan, H. Johnson, L. Kamphuis, A. Pandiyan, S. Kinge, M. C. M. van de Sanden, M. N. Tsampas, ACS Appl. Energy Mater., 2021, 4, 9600 |
237. | M. Ben-Naim, C. W. Aldridge, M. A. Steiner, A. C. Nielander, T. G. Deustch, J. L. Young, T. F. Jaramillo, Chem. Catal., 2022, 2, 195 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The main approaches of green hydrogen production.
Schematic illustrations of water electrolyzers, including a AWE, b PEMWE, c AEMWE, and d SOEC.
Schematic illustrations of water photolysis technologies, including a photocatalysis, b photoelectrocatalysis, and c photovoltaic-photoelectrocatalytic coupling system.
a The schematic diagram of the synthesis route of Pt1/OLC catalyst. b The optimized atomic model of PtO2C295. c Polarization curves of the Pt1/OLC catalyst compared with Pt1/graphene, 20wt % Pt/C and 5wt % Pt/C.[50] Copyright 2019, Springer Nature. d PEM electrolyzer test station. e Durability voltage-time plots of CoP and Pt black in PEM electrolyzer. [65] Copyright 2019, Springer Nature.
a TEM image of Ir25%/WXTi1-XO2, b The OER activity of Ir/WXTi1-XO2 and Ir black.[86] Copyright 2018, The Electrochemical Society. c HAADF-STEM image of Ir/Nb2O5-x. d, e Polarization and chronopotentiometric curves of Ir/Nb2O5-x catalyst in PEM electrolyzer.[87] Copyright 2022, Wiley-VCH.
a The HRTEM images of Ba2PrIrO6 before and after acid-treated. b The ratio of element leaching from A2B’IrO6.[89] Copyright 2022, Elsevier. c The theoretical model of Ti(Ir)O2/SrTi(Ir)O3. d The volcano curve of theoretical OER overpotentials over different materials. e The comparison of Ir mass activity of SrTi(Ir)O3 and IrO2. [91] Copyright 2020, Wiley-VCH.
a Dissolved nickel and iron ions after electrolysis. b Schematic illustration of restricted diffusion of proton acceptors within the interlayers of NiFe LDH.[111] Copyright 2019, Wiley-VCH. c Schematic illustration of the formation of M2B layers on metal sheets. d Crystal structure of M2B. e HRTEM images of the boronized Ni sheet after OER. f Charge density difference plot of the first layer of metaborate reformed γ-NiOOH slab.[119] Copyright 2019, Royal Society of Chemistry.
a Digital image of a NiFe material (0.1 m × 1 m) obtained from a scaled-up corrosion engineering method. b Chronopotentiometric curves of the electrode at a current density of
a The crystal structure and the polarization curves of hybrid perovskite oxide.[138] Copyright 2022, Elsevier. b The schematic diagram of NiFe-LDH in AEMWE.[139] Copyright 2020, American Chemical Society. c Schematic illustration of the synthesis of NiFe LDH-POMs. d Polarization and stability curves of NiFe LDH-POM for overall water splitting measurement in an electrolysis.[143] Copyright 2022, Wiley-VCH.
a Schematic illustration of traditional LSC electrode (TE-LSC). b Schematic illustration of honeycomb LSC-YSZ electrode (HE-LSC). c Comparison of stability of HE-LSC and TE-LSC.[159] Copyright 2018, Wiley-VCH.
a Ultraviolet-visible diffuse reflectance spectrum of Al-doped SrTiO3 (black line) and External quantum efficiency (red dots) of Rh/Cr2O3/CoOOH loaded SrTiO3: Al.[166] Copyright 2020, Springer Nature. b Solar spectrum and its energy distribution.[24] Copyright 2020, American Chemical Society. c Energy bands, conversion rates and corresponding colors of a serious of AgAl1-xGaxO2 samples.[171] Copyright 2011, American Chemical Society. d SEM images of different species deposited on BiVO4.[178] Copyright 2013, Springer Nature.
a Photo of a single panel (625 cm2) and b a 100 m2 solar hydrogen production system.[182] Copyright 2021, Springer Nature. c Schematic of the hydrogen farm project. d Photo of a large-scale solar storage module.[46] Copyright 2020, Wiley-VCH.
a Schematic illustration of band structure for representative n-type semiconductor materials. b Theoretical STH conversion efficiency of TiO2, WO3, Fe2O3, and BiVO4 under 1 sun irradiation. [193] Copyright 2019, Wiley-VCH. c The energy band diagram of p-Fe2O3 modified n-Fe2O3 and n-Fe2O3. d The photocurrent density of n-Fe2O3 with and without p-type coating. e The incident photon-to-current efficiency (IPCE) of n-Fe2O3 with and without p-type coating.[223] Copyright 2012, American Chemical Society. f Schematic diagram for the synthesis of In:GaN/Ta3N5/Mg:GaN heterostructure photoelectrode. g The current-voltage curves of Ta3N5-based photoanodes with different layered structures. h The steady-state photocurrent for Ta3N5-based photoanodes under low-bias conditions.[227] Copyright 2022, Springer Nature.
a Schematic illustration of band structure for representative p-type semiconductor materials. b Schematic representation of the 4 nm ZnO|0.17 nm Al2O3|11 nm TiO2 electrode structure. c The scanning electron micrograph of 4 nm ZnO|0.17 nm Al2O3|11 nm TiO2 after electrodepositing Pt nanoparticles. d The PEC response for surface-protected electrode.[233] Copyright 2011, Springer Nature. e Diagram of magnetic field-assisted PEC water splitting. f The charge separation efficiency of photoelectrode with and without magnetic field. [234] Copyright 2021, American Chemical Society.
a Schematic representation on the photoanodes preparation and BiVO4 photoanodes deposited on the porous light penetrable substrates for the PEM electrolysis. b The current-voltage curves for BiVO4 and W: BiVO4. [236] Copyright 2021, American Chemical Society. c Schematics of outdoor device with photoreactor and photoelectrode. d The lifetime H2 for GaInP2/GaAs tandem absorber photoelectrodes with a MoS2 catalyst.[237] Copyright 2022, Elsevier.
Future directions of green hydrogen production catalysts.