Citation: | Yuliang Yuan, Zhilong Yang, Wenchuan Lai, Jiawei Zhang, Xuli Chen, Hongwen Huang. Rational design and preparation of core-shell nanomaterials to boost their catalytic performance[J]. Energy Lab, 2023, 1(2): 220021. doi: 10.54227/elab.20220021 |
From the morphological point of view, catalysts can be classified into zero-dimensional (nanoparticle or quantum dot), one-dimensional (nanowire), two-dimensional (nanosheet), three-dimensional, and a combination of them. Among the varieties of morphology, core-shell structural catalysts with three-dimensional configuration stand out due to their unique construction and rich forms of interaction between the core and the shell, as well as their abundant ways of interaction with the catalytic intermediates. Constructing high-performance core-shell structural catalysts relies on the comprehensive understanding of the catalytic process and precise control over the catalyst structure. Here in this review, we attempt to sort out common synthetic methods for catalysts with core-shell structures from basic techniques to complex multiple processes. We will analyze how the core-shell configuration affects the catalytic performance from the microscopic to mesoscopic scales. We would resolve the structure-property relationship from the aspects of activity, selectivity, and durability, respectively. Finally, we would end this review with perspectives on the future development of core-shell catalysts.
1. | R. F. Wang, H. Wang, F. Luo, S. J. Liao, Electrochem. Energy Rev., 2018, 1, 324 |
2. | B. Liu, S. J. Liao, Z. X. Liang, Prog. Chem., 2011, 23, 852. |
3. | X. Wang, B. He, Z. Hu, Z. Zeng, S. Han, Sci. Technol. Adv. Mater., 2014, 15, 043502 |
4. | S. T. Hunt, Y. Roman-Leshkov, Acc. Chem. Res., 2018, 51, 1054 |
5. | S. Das, J. Perez-Ramirez, J. L. Gong, N. Dewangan, K. Hidajat, B. C. Gates, S. Kawi, Chem. Soc. Rev., 2020, 49, 2937 |
6. | N. V. Long, Y. Yang, C. M. Thi, N. V. Minh, Y. Q. Cao, M. Nogami, Nano Energy, 2013, 2, 636 |
7. | J. J. Ge, Z. J. Li, X. Hong, Y. D. Li, Chem. -Eur. J., 2019, 25, 5113 |
8. | B. Hammer, J. K. Norskov, Nature, 1995, 376, 238 |
9. | J. Greeley, I. E. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Norskov, Nat. Chem., 2009, 1, 552 |
10. | S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. D. Yang, G. A. Somorjai, Nat. Mater., 2009, 8, 126 |
11. | D. Gohl, A. Garg, P. Paciok, K. J. J. Mayrhofer, M. Heggen, Y. Shao-Horn, R. E. Dunin-Borkowski, Y. Roman-Leshkov, M. Ledendecker, Nat. Mater., 2020, 19, 287 |
12. | S. Hu, W. X. Li, Science, 2021, 374, 1360 |
13. | T. Tang, W. J. Jiang, X. Z. Liu, J. Deng, S. Niu, B. Wang, S. F. Jin, Q. Zhang, L. Gu, J. S. Hu, L. J. Wan, J. Am. Chem. Soc., 2020, 142, 7116 |
14. | L.-P. Yuan, T. Tang, J.-S. Hu, L.-J. Wan, Acc. Mater. Res., 2021, 2, 907 |
15. | E. Gioria, L. Duarte-Correa, N. Bashiri, W. Hetaba, R. Schomaecker, A. Thomas, Nanoscale Adv., 2021, 3, 3454 |
16. | Z. J. Wang, J. Qi, N. L. Yang, R. B. Yu, D. Wang, Mater. Chem. Front., 2021, 5, 1126 |
17. | M. Zhao, K. Deng, L. He, Y. Liu, G. Li, H. Zhao, Z. Tang, J. Am. Chem. Soc., 2014, 136, 1738 |
18. | S. Y. Xue, G. Y. Chen, F. Li, Y. H. Zhao, Q. W. Zeng, J. H. Peng, F. L. Shi, W. C. Zhang, Y. Z. Wang, J. B. Wu, R. C. Che, Small, 2021, 17, 2100559 |
19. | J. H. Hodak, A. Henglein, M. Giersig, G. V. Hartland, J. Phys. Chem. B, 2000, 104, 11708 |
20. | R. Harpeness, A. Gedanken, Langmuir, 2004, 20, 3431 |
21. | N. Ghows, M. H. Entezari, Ultrason. Sonochem., 2011, 18, 629 |
22. | R. Ghosh Chaudhuri, S. Paria, Chem. Rev., 2012, 112, 2373 |
23. | W. Stber, A. Fink, E. Bohn, J. Colloid Interface Sci., 1968, 26, 62 |
24. | N. Avci, P. F. Smet, H. Poelman, N. Van de Velde, K. De Buysser, I. Van Driessche, D. Poelman, J. Sol-Gel Sci. Technol., 2009, 52, 424 |
25. | B. Dong, C. R. Li, X. J. Wang, J. Sol-Gel Sci. Technol., 2007, 44, 161 |
26. | H. Xiao, Z. Ai, L. Zhang, J. Phys. Chem. C, 2009, 113, 16625 |
27. | M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, B. Delmon, Chem. Mater., 2003, 15, 395 |
28. | Y. F. Lim, C. S. Chua, C. J. Lee, D. Chi, Phys. Chem. Chem. Phys., 2014, 16, 25928 |
29. | L. M. Liz-Marzán, M. Giersig, P. Mulvaney, Langmuir, 1996, 12, 4329 |
30. | G. Büchel, K. K. Unger, A. Matsumoto, K. Tsutsumi, Adv. Mater., 1998, 10, 1036 |
31. | Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc., 2008, 130, 28 |
32. | Q. He, Z. Zhang, J. Xiong, Y. Xiong, H. Xiao, Opt. Mater., 2008, 31, 380 |
33. | W. Li, J. Yang, Z. Wu, J. Wang, B. Li, S. Feng, Y. Deng, F. Zhang, D. Zhao, J. Am. Chem. Soc., 2012, 134, 11864 |
34. | K. Tedsree, T. Li, S. Jones, C. W. Chan, K. M. Yu, P. A. Bagot, E. A. Marquis, G. D. Smith, S. C. Tsang, Nat. Nanotechnol., 2011, 6, 302 |
35. | X. Wang, S. I. Choi, L. T. Roling, M. Luo, C. Ma, L. Zhang, M. Chi, J. Liu, Z. Xie, J. A. Herron, M. Mavrikakis, Y. Xia, Nat. Commun., 2015, 6, 7594 |
36. | D. Liu, S. Q. Lu, Y. R. Xue, Z. Guan, J. J. Fang, W. Zhu, Z. B. Zhuang, Nano Energy, 2019, 59, 26 |
37. | K. A. Kuttiyiel, Y. Choi, K. Sasaki, D. Su, S. M. Hwang, S. D. Yim, T. H. Yang, G. G. Park, R. R. Adzic, Nano Energy, 2016, 29, 261 |
38. | S. J. Seo, H. K. Chung, J. B. Yoo, H. Chae, S. W. Seo, S. M. Cho, J. Vac. Sci. Technol. A, 2014, 32, 01A1298 |
39. | C. Y. He, X. M. Bu, S. W. Yang, P. He, G. Q. Ding, X. M. Xie, Appl. Surf. Sci., 2018, 436, 373 |
40. | D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruna, Nat. Mater., 2013, 12, 81 |
41. | K. J. Mayrhofer, V. Juhart, K. Hartl, M. Hanzlik, M. Arenz, Angew. Chem. Int. Ed., 2009, 48, 3529 |
42. | M. Oezaslan, F. Hasché, P. Strasser, J. Phys. Chem. Lett., 2013, 4, 3273 |
43. | X. Tian, X. Zhao, Y. Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. D. Lou, B. Y. Xia, Science, 2019, 366, 850 |
44. | P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Nat. Chem., 2010, 2, 454 |
45. | D. Li, X. Zhang, M. Ramzan, K. Gu, Y. Chen, J. Zhang, B. Zou, H. Zhong, Chem. Mater., 2020, 32, 6650 |
46. | X. Li, M. Su, Y. C. Wang, M. Xu, M. Tong, S. J. Haigh, J. Zhang, Inorg. Chem., 2022, 61, 3989 |
47. | N. Nagelj, A. Brumberg, S. Peifer, R. D. Schaller, J. H. Olshansky, J. Phys. Chem. Lett., 2022, 13, 3209 |
48. | Y. Yan, Z. Zhou, X. Zhao, J. Zhou, J. Colloid Interface Sci., 2014, 435, 91 |
49. | J. Tian, T. Yan, Z. Qiao, L. Wang, W. Li, J. You, B. Huang, Appl. Catal. B: Environ., 2017, 209, 566 |
50. | G. A. Kamat, C. Yan, W. T. Osowiecki, I. A. Moreno-Hernandez, M. Ledendecker, A. P. Alivisatos, J. Phys. Chem. Lett., 2020, 11, 5318 |
51. | D. Liu, W. Li, X. Feng, Y. Zhang, Chem. Sci., 2015, 6, 7015 |
52. | N. Teo, C. Jin, A. Kulkarni, S. C. Jana, J. Colloid Interface Sci., 2020, 561, 772 |
53. | D. Liu, J. Yan, K. Wang, Y. Wang, G. Luo, Nano Res., 2021, 15, 1199 |
54. | A. J. Medford, A. Vojvodic, J. S. Hummelshj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J. K. Nrskov, J. Catal., 2015, 328, 36 |
55. | A. L. Strickler, A. Jackson, T. F. Jaramillo, ACS Energy Lett., 2017, 2, 244 |
56. | J. E. S. van der Hoeven, J. Jelic, L. A. Olthof, G. Totarella, R. J. A. van Dijk-Moes, J. M. Krafft, C. Louis, F. Studt, A. van Blaaderen, P. E. de Jongh, Nat. Mater., 2021, 20, 1216 |
57. | H. B. Zhang, Z. J. Ma, J. J. Duan, H. M. Liu, G. G. Liu, T. Wang, K. Chang, M. Li, L. Shi, X. G. Meng, K. C. Wu, J. H. Ye, ACS Nano, 2016, 10, 684 |
58. | H. Xie, S. Q. Chen, J. S. Liang, T. Y. Wang, Z. F. Hou, H. L. Wang, G. L. Chai, Q. Li, Adv. Funct. Mater., 2021, 31, 2100883 |
59. | Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li, Y. Zhang, Y. Sheng, X. Yang, Z. Geng, J. Zeng, Adv. Sci., 2020, 7, 1902989 |
60. | D. Yu, L. Gao, T. Sun, J. Guo, Y. Yuan, J. Zhang, M. Li, X. Li, M. Liu, C. Ma, Q. Liu, A. Pan, J. Yang, H. Huang, Nano Lett., 2021, 21, 1003 |
61. | S. Aguado, S. El-Jamal, F. Meunier, J. Canivet, D. Farrusseng, Chem. Commun., 2016, 52, 7161 |
62. | Y. Long, S. Song, J. Li, L. Wu, Q. Wang, Y. Liu, R. Jin, H. Zhang, ACS Catal., 2018, 8, 8506 |
63. | Z. Shang, X. Liang, Nano Lett., 2017, 17, 104 |
64. | M. Cai, Y. Li, Q. Liu, Z. Xue, H. Wang, Y. Fan, K. Zhu, Z. Ke, C.-Y. Su, G. Li, Adv. Sci., 2019, 6, 1802365 |
65. | Y. Xu, X. Li, J. Gao, J. Wang, G. Ma, X. Wen, Y. Yang, Y. Li, M. Ding, Science, 2021, 371, 610 |
66. | X. Y. Zhang, W. J. Li, X. F. Wu, Y. W. Liu, J. Chen, M. Zhu, H. Y. Yuan, S. Dai, H. F. Wang, Z. Jiang, P. F. Liu, H. G. Yang, Energy Environ. Sci., 2022, 15, 234 |
67. | S. S. Zhang, S. L. Zhao, D. X. Qu, X. J. Liu, Y. P. Wu, Y. H. Chen, W. Huang, Small, 2021, 17, 2102293 |
68. | Y. Zhao, H. Zhou, X. Zhu, Y. Qu, C. Xiong, Z. Xue, Q. Zhang, X. Liu, F. Zhou, X. Mou, W. Wang, M. Chen, Y. Xiong, X. Lin, Y. Lin, W. Chen, H.-J. Wang, Z. Jiang, L. Zheng, T. Yao, J. Dong, S. Wei, W. Huang, L. Gu, J. Luo, Y. Li, Y. Wu, Nat. Catal., 2021, 4, 134 |
69. | L. Adijanto, D. A. Bennett, C. Chen, A. S. Yu, M. Cargnello, P. Fornasiero, R. J. Gorte, J. M. Vohs, Nano Lett., 2013, 13, 2252 |
70. | M. Karuppannan, Y. Kim, S. Gok, E. Lee, J. Y. Hwang, J. H. Jang, Y. H. Cho, T. Lim, Y. E. Sung, O. J. Kwon, Energy Environ. Sci., 2019, 12, 2820 |
71. | T. O. He, W. C. Wang, X. L. Yang, F. L. Shi, Z. Y. Ye, Y. Z. Zheng, F. Li, J. B. Wu, Y. D. Yin, M. S. Jin, ACS Nano, 2021, 15, 7348 |
72. | L. Gloag, T. M. Benedetti, S. Cheong, R. F. Webster, C. E. Marjo, J. J. Gooding, R. D. Tilley, Nanoscale, 2018, 10, 15173 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Graphical illustration of the common methods for the synthesis of core-shell nanomaterials.
Schematic illustration shows the configuration of core-shell structure on the effects of catalysis.
a Atomic model and TEM image of Ir@Pt core-shell nanoparticle. b Mass activity and specific activity of Pt/C and Ir@Pt at 0.9 VRHE before and after
a TEM image of a representative CuPd@Pd nanoparticle. b HER polarization curves of Cu/C, Cu@Pd/C, Pd/C, and Pt/C catalysts in 0.5 M H2SO4 electrolyte. c ORR polarization curves of Cu@Pd/C, Pd/C, and Pt/C catalysts in 0.1 M HClO4 electrolyte.[58] Copyright 2021, Wiley-VCH GmbH. d TEM image of Bi@Sn core-shell nanoparticle. e HAADF-STEM image of Bi@Sn nanoparticle. f Faradaic efficiency of HCOOH on Bi@Sn nanoparticles and Sn nanoparticles.[59] Copyright 2020, The Authors. g Schematic illustration shows the geometric interaction between ordered AuCu3 core and fct Au shell. h Faradaic efficiency of HCOOH on o-AuCu3@fct Au nanoparticle and fcc Au nanoparticle.[60] Copyright 2021, American Chemical Society.
a Schematic illustration for the preparation of the Pt/Al2O3@SIM-1 sphere. Ethylene b and Toluene c hydrogenation on Pt/Al2O3 and Pt/Al2O3@SIM-1 catalysts.[61] Copyright 2016, The Royal Society of Chemistry. d Schematic illustration of the wettable Cu, hydrophobic Cu, and the atomic model of the interface between Cu and C coating. e From left to right: *CO desorption to form CO(g), *CO protonation to form *CHO or *COH, and C-C coupling to form *OCCO on Cu. f Free energies for the three competing reactions under different H2O quantities.[66] Copyright 2022, The Royal Society of Chemistry.
a Schematic illustration shows the integration of two catalysts into one particle by constructing the core-shell structure. b TEM image of Pd@IRMOF-3 nanocomposites. c Synthetic route for Pd@IRMOF-3 hybrids. d cascade reactions involving Knoevenagel condensation of A and Malononitrile via the IRMOF-3 shell and subsequent selective hydrogenation of intermediate product B to C via the Pd nanoparticle core.[17] Copyright 2014, American Chemical Society. e-f Elemental mappings images for Cu@Ag, red for copper and green for silver. g Schematic illustration of tandem catalysis for CO2 reduction to C2 over Cu@Ag core-shell nanoparticle.[67] Copyright 2021, Wiley-VCH GmbH.
a Schematic illustration of the synthesis of Pt@mSiO2 nanoparticles. Thermal stability of Pt@mSiO2 nanoparticles after heat treatment at b 350 °C, c 550 °C, and d 750 °C.[10] Copyright 2009, Macmillan Publishers Limited. e Pd@CeO2 loaded on alkyl-siloxane functionalized YSZ (100) after heat treatment in air at
a TEM images of Pd@Pt and Pd@a-Pd-P@Pt and the corresponding mass activity upon potential cycles. b Theoretical models showing the formation energies of Pt vacancy and Pd vacancy for Pd@Pt2L. c Theoretical models showing the formation energies of Pt vacancy and Pd vacancy for Pd@a-Pd-P@Pt2L.[71] Copyright 2021, American Chemical Society. d Schematic showing the evolution of the partially and fully covered core-shell particles during potential cycling.[11] Copyright 2019, Springer Nature Limited.