Citation: | Kai Ding, Mingyang Zhong, Xiaoyuan Zeng, Shouyi Yuan, Yonggang Wang. A perspective on the critical design criteria for anode-free li metal batteries[J]. Energy Lab, 2023, 1(2): 220015. doi: 10.54227/elab.20220015 |
Batteries with Li metal anode have attracted worldwide attention from both academic and industrial communities. Unfortunately, severe Li dendrite growth accompanied with active Li loss hamper their practical application. Although various strategies have been claimed to address the issue of Li dendrite, the active Li loss remains a challenge. Without excessive metallic Li in the anode, the anode-free Li metal batteries configuration promises an ultrahigh energy density over 500 Wh kg-1. During the past several years, significant advances on the cycle stability of anode-free Li metal batteries have been achieved by various strategies. In this perspective, we initially revisit the critical parameters for anode-free Li metal batteries, and then summarize recent strategies for developing anode-free Li metal batteries by dividing the strategies into five categories including developing Li-rich cathode materials, optimizing the electrolytes , designing structured Li-free anode, robust artificial solid electrolyte interphase and solid state electrolyte design. Finally, we provide the future guidelines for developing anode-free Li metal batteries.
1. | A. Zecca, L. Chiari, Energy Pol., 2010, 38, 1 |
2. | J. M. Tarascon, M. Armand, Nature, 2001, 414, 359 |
3. | M. Armand, J. M. Tarascon, Nature, 2008, 451, 652 |
4. | M. Winter, B. Barnett, K. Xu, Chem. Rev., 2018, 118, 11433 |
5. | W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci., 2014, 7, 513 |
6. | D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol., 2017, 12, 194 |
7. | X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev., 2017, 117, 10403 |
8. | S. Yuan, T. Kong, Y. Zhang, P. Dong, Y. Zhang, X. Dong, Y. Wang, Y. Xia, Angew. Chem. Int. Ed., 2021, 60, 25624 |
9. | J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy, 2019, 4, 180 |
10. | W. Liu, P. Liu, D. Mitlin, Adv. Energy Mater., 2020, 10, 2002297 |
11. | Z. Y. Wang, Z. X. Lu, W. Guo, Q. Luo, Y. H. Yin, X. B. Liu, Y. S. Li, B. Y. Xia, Z. P. Wu, Adv. Mater., 2021, 33, 2006702 |
12. | S. Yuan, J. L. Bao, C. Li, Y. Xia, D. G. Truhlar, Y. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 10616 |
13. | P. Shi, T. Li, R. Zhang, X. Shen, X.-B. Cheng, R. Xu, J.-Q. Huang, X.-R. Chen, H. Liu, Q. Zhang, Adv. Mater., 2019, 31, 1807131 |
14. | R. A.-O. Zhang, X. R. Chen, X. A.-O. Chen, X. A.-O. Cheng, X. Q. Zhang, C. Yan, Q. A.-O. Zhang, Angew. Chem. Int. Ed., 2017, 56, 7764 |
15. | S.-H. Wang, Y.-X. Yin, T.-T. Zuo, W. Dong, J.-Y. Li, J.-L. Shi, C.-H. Zhang, N.-W. Li, C.-J. Li, Y.-G. Guo, Adv. Mater., 2017, 29, 1703729 |
16. | X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S.-C. Liou, K. Amine, K. Xu, C. Wang, Nat. Nanotechnol., 2018, 13, 715 |
17. | S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J.-G. Zhang, Adv. Mater., 2018, 30, 1706102 |
18. | S. Yuan, K. Ding, X. Zeng, D. Bin, Y. Zhang, P. Dong, Y. Wang, Adv. Mater., 2022, 2206228 |
19. | Y. Yu, G. Huang, J.-Y. Du, J.-Z. Wang, Y. Wang, Z.-J. Wu, X.-B. Zhang, Energy Environ. Sci., 2020, 13, 3075 |
20. | S. Yuan, J. L. Bao, N. Wang, X. Zhang, Y. Wang, D. G. Truhlar, Y. Xia, Chem. Commun., 2020, 56, 8257 |
21. | Y. Yang, Y. Yin, D. M. Davies, M. Zhang, M. Mayer, Y. Zhang, E. S. Sablina, S. Wang, J. Z. Lee, O. Borodin, C. S. Rustomji, Y. S. Meng, Energy Environ. Sci., 2020, 13, 2209 |
22. | J. Holoubek, K. Kim, Y. Yin, Z. Wu, H. Liu, M. Li, A. Chen, H. Gao, G. Cai, T. A. Pascal, P. Liu, Z. Chen, Energy Environ. Sci., 2022, 15, 1647 |
23. | T.-T. Zuo, Y. Shi, X.-W. Wu, P.-F. Wang, S.-H. Wang, Y.-X. Yin, W.-P. Wang, Q. Ma, X.-X. Zeng, H. Ye, R. Wen, Y.-G. Guo, ACS Appl. Mater. Interfaces, 2018, 10, 30065 |
24. | S. Yuan, S. Weng, F. Wang, X. Dong, Y. Wang, Z. Wang, C. Shen, J. L. Bao, X. Wang, Y. Xia, Nano Energy, 2021, 83, 105847 |
25. | X.-D. Lin, Y. Gu, X.-R. Shen, W.-W. Wang, Y.-H. Hong, Q.-H. Wu, Z.-Y. Zhou, D.-Y. Wu, J.-K. Chang, M.-S. Zheng, B.-W. Mao, Q.-F. Dong, Energy Environ. Sci., 2021, 14, 1439 |
26. | A. Hu, W. Chen, X. Du, Y. Hu, T. Lei, H. Wang, L. Xue, Y. Li, H. Sun, Y. Yan, J. Long, C. Shu, J. Zhu, B. Li, X. Wang, J. Xiong, Energy Environ. Sci, 2021, 14, 4115 |
27. | K. R. Adair, C. Zhao, M. N. Banis, Y. Zhao, R. Li, M. Cai, X. Sun, Angew. Chem. Int. Ed., 2019, 58, 15797 |
28. | Y. Gao, Z. Yan, J. L. Gray, X. He, D. Wang, T. Chen, Q. Huang, Y. C. Li, H. Wang, S. H. Kim, T. E. Mallouk, D. Wang, Nat. Mater., 2019, 18, 384 |
29. | S. Yuan, J. L. Bao, J. Wei, Y. Xia, D. G. Truhlar, Y. Wang, Energy Environ. Sci., 2019, 12, 2741 |
30. | X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater., 2017, 16, 572 |
31. | J. Liang, X. Li, Y. Zhao, L. V. Goncharova, W. Li, K. R. Adair, M. N. Banis, Y. Hu, T.-K. Sham, H. Huang, L. Zhang, S. Zhao, S. Lu, R. Li, X. Sun, Adv. Energy Mater., 2019, 9, 1902125 |
32. | J. Dai, C. Yang, C. Wang, G. Pastel, L. Hu, Adv. Mater., 2018, 30, 1802068 |
33. | C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena, J. Zheng, M. N. Garaga, B. H. Ko, Y. Mao, S. He, Y. Gao, P. Wang, M. Tyagi, F. Jiao, R. Briber, P. Albertus, C. Wang, S. Greenbaum, Y.-Y. Hu, A. Isogai, M. Winter, K. Xu, Y. Qi, L. Hu, Nature, 2021, 598, 590 |
34. | X. Li, R. Zhu, H. Jiang, Y. Yu, W. Wan, X. Li, C. Wang, Y. Huang, J. Mater. Chem. A, 2022, 10, 11246 |
35. | D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, S. Zhang, G. Jiang, L. Chen, A. Yu, X. Wang, Nat. Commun., 2021, 12, 186 |
36. | J.-G. Zhang, Nat. Energy, 2019, 4, 637 |
37. | J. Chen, J. Xiang, X. Chen, L. Yuan, Z. Li, Y. Huang, Energy Storage Mater., 2020, 30, 179 |
38. | R. Weber, M. Genovese, A. J. Louli, S. Hames, C. Martin, I. G. Hill, J. R. Dahn, Nat. Energy, 2019, 4, 683 |
39. | A. J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon, J. deGooyer, Z. Deng, R. T. White, J. Lee, T. Rodgers, R. Petibon, S. Hy, S. J. H. Cheng, J. R. Dahn, Nat. Energy, 2020, 5, 693 |
40. | J. Xiao, Q. Li, Y. Bi, M. Cai, B. Dunn, T. Glossmann, J. Liu, T. Osaka, R. Sugiura, B. Wu, J. Yang, J.-G. Zhang, M. S. Whittingham, Nat. Energy, 2020, 5, 561 |
41. | S. Chen, J. Zheng, L. Yu, X. Ren, M. H. Engelhard, C. Niu, H. Lee, W. Xu, J. Xiao, J. Liu, J.-G. Zhang, Joule, 2018, 2, 1548 |
42. | A. J. Louli, M. Genovese, R. Weber, S. G. Hames, E. R. Logan, J. R. Dahn, J. Electrochem. Soc., 2019, 166, A1291 |
43. | C. Fang, B. Lu, G. Pawar, M. Zhang, D. Cheng, S. Chen, M. Ceja, J.-M. Doux, H. Musrock, M. Cai, B. Liaw, Y. S. Meng, Nat. Energy, 2021, 6, 987 |
44. | W. Deng, X. Yin, W. Bao, X. Zhou, Z. Hu, B. He, B. Qiu, Y. S. Meng, Z. Liu, Nat. Energy, 2022, 7, 1031 |
45. | X. Ren, L. Zou, X. Cao, M. H. Engelhard, W. Liu, S. D. Burton, H. Lee, C. Niu, B. E. Matthews, Z. Zhu, C. Wang, B. W. Arey, J. Xiao, J. Liu, J.-G. Zhang, W. Xu, Joule, 2019, 3, 1662 |
46. | Q. Li, S. Tan, L. Li, Y. Lu, Y. He, Sci. Adv., 2017, 3, e1701246 |
47. | W. Shin, A. Manthiram, Angew. Chem. Int. Ed., 2022, 61, e202115909 |
48. | Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li, H. Zhou, Nat. Energy, 2021, 6, 653 |
49. | L. Lin, K. Qin, Q. Zhang, L. Gu, L. Suo, Y.-s. Hu, H. Li, X. Huang, L. Chen, Angew. Chem. Int. Ed., 2021, 60, 8289 |
50. | B. A. Jote, K. N. Shitaw, M. A. Weret, S.-C. Yang, C.-J. Huang, C.-H. Wang, Y.-T. Weng, S.-H. Wu, W.-N. Su, B. J. Hwang, J. Power Sources, 2022, 532, 231303 |
51. | C.-J. Huang, Y.-C. Hsu, K. N. Shitaw, Y.-J. Siao, S.-H. Wu, C.-H. Wang, W.-N. Su, B. J. Hwang, ACS Appl. Mater. Interfaces, 2022, 14, 26724 |
52. | L. Lin, K. Qin, M. Li, Y.-s. Hu, H. Li, X. Huang, L. Chen, L. Suo, Energy Storage Mater., 2022, 45, 821 |
53. | W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.-M. Chiang, Y. Cui, Nat. Commun., 2015, 6, 7436 |
54. | S. Nanda, A. Bhargav, A. Manthiram, Joule, 2020, 4, 1121 |
55. | Y. Ren, A. Bhargav, W. Shin, H. Sul, A. Manthiram, Angew. Chem. Int. Ed., 2022, 61, e202207907 |
56. | J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, Nat. Commun., 2015, 6, 6362 |
57. | J. Wang, Y. Yamada, K. Sodeyama, C. H. Chiang, Y. Tateyama, A. Yamada, Nat. Commun., 2016, 7, 12032 |
58. | X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, C. Wang, Chem, 2018, 4, 174 |
59. | J. Alvarado, M. A. Schroeder, T. P. Pollard, X. Wang, J. Z. Lee, M. Zhang, T. Wynn, M. Ding, O. Borodin, Y. S. Meng, K. Xu, Energy Environ. Sci., 2019, 12, 780 |
60. | S. Lee, K. Park, B. Koo, C. Park, M. Jang, H. Lee, H. Lee, Adv. Funct. Mater., 2020, 30, 2003132 |
61. | P. Liang, H. Sun, C.-L. Huang, G. Zhu, H.-C. Tai, J. Li, F. Wang, Y. Wang, C.-J. Huang, S.-K. Jiang, M.-C. Lin, Y.-Y. Li, B.-J. Hwang, C.-A. Wang, H. Dai, Adv. Mater., 2022, 34, 2207361 |
62. | Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D. G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, C. V. Amanchukwu, S. T. Hung, Y. Ma, E. G. Lomeli, J. Qin, Y. Cui, Z. Bao, Nat. Energy, 2020, 5, 526 |
63. | Z. Yu, P. E. Rudnicki, Z. Zhang, Z. Huang, H. Celik, S. T. Oyakhire, Y. Chen, X. Kong, S. C. Kim, X. Xiao, H. Wang, Y. Zheng, G. A. Kamat, M. S. Kim, S. F. Bent, J. Qin, Y. Cui, Z. Bao, Nat. Energy, 2022, 7, 94 |
64. | M. S. Kim, Z. Zhang, P. E. Rudnicki, Z. Yu, J. Wang, H. Wang, S. T. Oyakhire, Y. Chen, S. C. Kim, W. Zhang, D. T. Boyle, X. Kong, R. Xu, Z. Huang, W. Huang, S. F. Bent, L.-W. Wang, J. Qin, Z. Bao, Y. Cui, Nat. Mater., 2022, 21, 445 |
65. | L. Lin, K. Qin, Y.-s. Hu, H. Li, X. Huang, L. Suo, L. Chen, Adv. Mater., 2022, 34, 2110323 |
66. | W. Cao, Q. Li, X. Yu, H. Li, eScience, 2022, 2, 47 |
67. | Q. Yun, Y.-B. He, W. Lv, Y. Zhao, B. Li, F. Kang, Q.-H. Yang, Adv. Mater., 2016, 28, 6932 |
68. | H. Zhao, D. Lei, Y.-B. He, Y. Yuan, Q. Yun, B. Ni, W. Lv, B. Li, Q.-H. Yang, F. Kang, J. Lu, Adv. Energy Mater., 2018, 8, 1800266 |
69. | J. Yu, K. Shi, S. Zhang, D. Zhang, L. Chen, S. Li, J. Ma, H. Xia, Y.-B. He, Sci. China Mater., 2021, 64, 2409 |
70. | M. K. Aslam, Y. Niu, T. Hussain, H. Tabassum, W. Tang, M. Xu, R. Ahuja, Nano Energy, 2021, 86, 106142 |
71. | H. Kwon, J.-H. Lee, Y. Roh, J. Baek, D. J. Shin, J. K. Yoon, H. J. Ha, J. Y. Kim, H.-T. Kim, Nat. Commun., 2021, 12, 5537 |
72. | A. A. Assegie, C.-C. Chung, M.-C. Tsai, W.-N. Su, C.-W. Chen, B.-J. Hwang, Nanoscale, 2019, 11, 2710 |
73. | H. Wang, Y. Li, Y. Li, Y. Liu, D. Lin, C. Zhu, G. Chen, A. Yang, K. Yan, H. Chen, Y. Zhu, J. Li, J. Xie, J. Xu, Z. Zhang, R. Vilá, A. Pei, K. Wang, Y. Cui, Nano Lett., 2019, 19, 1326 |
74. | W. Chen, R. V. Salvatierra, M. Ren, J. Chen, M. G. Stanford, J. M. Tour, Adv. Mater., 2020, 32, 2002850 |
75. | L. Lin, L. Suo, Y.-s. Hu, H. Li, X. Huang, L. Chen, Adv. Energy Mater., 2021, 11, 2003709 |
76. | P. Li, X. Dong, C. Li, J. Liu, Y. Liu, W. Feng, C. Wang, Y. Wang, Y. Xia, Angew Chem. Int. Ed., 2019, 58, 2093 |
77. | Q. Li, H. Pan, W. Li, Y. Wang, J. Wang, J. Zheng, X. Yu, H. Li, L. Chen, ACS Energy Lett., 2018, 3, 2259 |
78. | J. Sun, S. Zhang, J. Li, B. Xie, J. Ma, S. Dong, G. Cui, Adv. Mater., 2022, 2209404 |
79. | A. A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, B.-J. Hwang, Nanoscale, 2018, 10, 6125 |
80. | R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.-P. Bonnet, T. N. T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Nat. Mater., 2013, 12, 452 |
81. | C. Fu, V. Venturi, J. Kim, Z. Ahmad, A. W. Ells, V. Viswanathan, B. A. Helms, Nat. Mater., 2020, 19, 758 |
82. | M. J. Lee, J. Han, K. Lee, Y. J. Lee, B. G. Kim, K.-N. Jung, B. J. Kim, S. W. Lee, Nature, 2022, 601, 217 |
83. | M. J. Wang, E. Carmona, A. Gupta, P. Albertus, J. Sakamoto, Nat. Commun., 2020, 11, 5201 |
84. | Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, Nat. Energy, 2020, 5, 299 |
85. | C. Niu, D. Liu, J. A. Lochala, C. S. Anderson, X. Cao, M. E. Gross, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, Nat. Energy, 2021, 6, 723 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Cell configuration and energy density of anode-free Li metal batteries: a Cell configuration of LIBs. b Cell configuration of LMBs. c Cell configuration of anode-free LMBs.[36] Copyright 2019, Nature Publishing Groups. d Cell configuration of anode-free Li-S batteries.[37] Copyright 2020, Elsevier. e Comparison of volumetric energy density of LIBs and anode-free LMBs.[38] Copyright 2019, Nature Publishing Groups. f Comparison of the cost between the LIBs and anode-free LMBs.[39] Copyright 2020, Nature Publishing Groups.
Influence of CE on anode-free Li metal batteries: a Cell configuration of different kinds of Li metal batteries. b Cycling performances and CEs of Li || NMC811 coin cells in 1.2 M LiFSI TEP:TTE (1:3 by molar ratio ). c Cycling performances and CEs of Li || NMC811 coin cells in 1.0 M LiPF6 in EC/EMC (3:7 by weight) with 2 wt% VC. d Cycling performance of anode-free Cu || NCM811 full cell in 1.2 M LiFSI TEP:TTE (1:3 by molar ratio). e Cycling performance of anode-free Cu || NCM811 full cell in 1.0 M LiPF6 in EC/EMC (3:7 by weight). [40] Copyright 2020, Nature Publishing Groups.
Influence of amount of electrolyte: a Li||Cu half-cell; b Li||NCM cell. a Li || Cu half-cells with different amount of electrolyte. b Li || NCM full cells with different amount of electrolyte.[40] Copyright 2020, Nature Publishing Groups.
Influence of external pressure on the performance and morphology of anode free Li metal batteries: a electrochemical performance of anode-free Li metal batteries under different pressure.[39] Copyright 2020, Nature Publishing Groups. b - e Morphologies of Li deposition under different external pressure.[43] Copyright 2021, Nature Publishing Groups.
Li rich cathode design for anode-free Li metal batteries: a NCM811 @ Li2O.[48] Copyright 2021, Nature Publishing Groups. b NCM811 @ Li2C2O4.[51] Copyright 2022, Elsevier. c NCM811 @ LiNO3.[50] Copyright 2022, ACS Publication. d Li2Ni0.5Mn1.5O4.[52] Copyright 2022, Elsevier. e Li2Ni0.8Co0.1Mn0.1O2.[49] Copyright 2021, Wiley-VEH.
Electrolyte design for anode-free Li metal batteries: a HCE and LHCE for anode-free Li metal batteries.[45] Copyright 2019, Elsevier. b Dual-salt carbonate-based electrolyte for anode-free Li metal batteries. [38, 39] Copyright 2019, Nature Publishing Groups. c Newly designed organic solvent for anode-free Li metal batteries.[62] copyright 2020, Nature Publishing Groups.
3D structured Li metal anode for anode-free Li metal batteries: a Electron-deficient carbon current collector.[71] Copyright 2021, Nature Publishing Groups. b Graphene oxide SEI layers for anode-free Li metal batteries.[72] Copyright 2009, Elsevier. c Si-PAN anode for anode-free Li metal batteries.[61] Copyright 2022, Wiley-VCH. d Lithiophilic carbon for anode-free Li metal batteries.[73] Copyright 2019, ACS Publication. e Alloyed anode for anode-free Li metal batteries.[75] Copyright 2021, Wiley-VCH.
Robust Artificial Solid Electrolyte Interphase for Anode-free Li metal batteries: a Polymer–inorganic solid–electrolyte interphase for Li metal batteries under lean electrolyte condition.[28] Copyright 2019, Nature Publishing Groups. b CuN3 modified Cu interphase.[77] Copyright 2018, ACS Publication. c LiF and LiPON based tenacious composite artificial SEI.[78] Copyright 2022, Wiley-VEH. d Thin-PEO film interphase.[79] Copyright 2009, Royal Society of Chemistry.
Solid State Electrolyte for Anode- Free Li Metal Batteries: a Single-ion BAB triblock copolymers as solid-state electrolyte.[80] Copyright 2013, Elsevier. b Chemomechanical solid ion conductor (SIC) as solid-state electrolyte.[81] Copyright 2020, Nature Publishing Groups. c Elastomeric solid-state electrolyte with a three-dimensional interconnected plastic crystal phase.[82] Copyright 2022, Nature Publishing Groups. d A copper-coordinated cellulose ion conductors for Li metal batteries.[33] Copyright 2021, Nature Publishing Groups. e Inorganic solid state electrolytes for Li metal batteries.[83] Copyright 2020, Nature Publishing Groups. f Li-free all solid state Li metal batteries with Ag/C anode.[84] Copyright 2020, Nature Publishing Groups.