Citation: | Xinyue Zhang, Yuqiao Zhang, Fan Yang, Jianming Zhang, Yong Liu, Shun Li. Magnetic field driven catalysis of multiferroic magnetoelectric nanocomposites[J]. Materials Lab, 2024, 3(1): 230025. doi: 10.54227/mlab.20230025 |
Magnetic field as a booster for catalytic reactions has been widely studied in the past few decades. Recently, multiferroic materials with intriguing magnetoelectric coupling effects have been emerging as a new type of catalyst, providing a unique opportunity for magnetically-driven catalytic reactions in a variety of fields, including clean energy, environmental and biomedical applications. In this review, we describe this entirely new catalysis phenomenon observed in multiferroic magnetoelectric composite materials, aiming at giving an in-depth understanding of magnetically-driven catalysis processes based on the direct magnetoelectric-catalytic effect. Moreover, the latest progress in catalytic applications of magnetoelectric nanocomposite nanomaterials is comprehensively summarized. Finally, the challenges and future perspectives for the design and application of high-efficient magneto-multiferroic catalysts are discussed.
1. | X. Li, W. Wang, F. Dong, Z. Zhang, L. Han, X. Luo, J. Huang, Z. Feng, Z. Chen, G. Jia, T. Zhang, ACS Catalysis, 2021, 11, 4739 |
2. | S. Li, Z. Zhao, J. Zhao, Z. Zhang, X. Li, J. Zhang, ACS Applied Nano Materials, 2020, 3, 1063 |
3. | Y. Xu, Z. Zhou, M. Zou, Y. Liu, Y. Zheng, Y. Yang, S. Lan, J. Lan, C.-W. Nan, Y.-H. Lin, Materials Today, 2022, 54, 225 |
4. | C. Hu, S. Tu, N. Tian, T. Ma, Y. Zhang, H. Huang, Angewandte Chemie International Edition, 2021, 60, 16309 |
5. | S. Li, Z. Zhao, M. Liu, X. Liu, W. Huang, S. Sun, Y. Jiang, Y. Liu, J. Zhang, Z. Zhang, Nano Energy, 2022, 95, 107031 |
6. | Q. Wu, H. Zhang, H. Liu, BMEMat, 2023, 1, e12010 |
7. | J. Li, Q. Pei, R. Wang, Y. Zhou, Z. Zhang, Q. Cao, D. Wang, W. Mi, Y. Du, ACS Nano, 2018, 12, 3351 |
8. | Y. Liu, Y. Wang, J. Ma, S. Li, H. Pan, C.-W. Nan, Y.-H. Lin, Progress in Materials Science, 2022, 127, 100943 |
9. | B. Dai, J. Guo, C. Gao, H. Yin, Y. Xie, Z. Lin, Advanced Materials, 2023, 35, 2210914 |
10. | W. Gao, Q. Liu, X. Zhao, C. Cui, S. Zhang, W. Zhou, X. Wang, S. Wang, H. Liu, Y. Sang, Nano Energy, 2021, 80, 105543 |
11. | W. Gao, R. Peng, Y. Yang, X. Zhao, C. Cui, X. Su, W. Qin, Y. Dai, Y. Ma, H. Liu, Y. Sang, ACS Energy Letters, 2021, 6, 2129 |
12. | S. Luo, K. Elouarzaki, Z. J. Xu, Angewandte Chemie International Edition, 2022, 61, 202203564 |
13. | X. Ren, T. Wu, Y. Sun, Y. Li, G. Xian, X. Liu, C. Shen, J. Gracia, H.-J. Gao, H. Yang, Z. J. Xu, Nature Communications, 2021, 12, 2608 |
14. | C. Hunt, Z. Zhang, K. Ocean, R. P. Jansonius, M. Abbas, D. J. Dvorak, A. Kurimoto, E. W. Lees, S. Ghosh, A. Turkiewicz, F. A. Garcés Pineda, D. K. Fork, C. P. Berlinguette, Journal of the American Chemical Society, 2022, 144, 733 |
15. | J. Yan, Y. Wang, Y. Zhang, S. Xia, J. Yu, B. Ding, Advanced Materials, 2021, 33, 2007525 |
16. | X. Jiang, Y. Chen, X. Zhang, F. You, J. Yao, H. Yang, B. Y. Xia, ChemSusChem, 2022, 15, e202201551 |
17. | H. Wang, K. Wang, Y. Zuo, M. Wei, P. Pei, P. Zhang, Z. Chen, N. Shang, Advanced Functional Materials, 2023, 33, 2210127 |
18. | R. Li, Y. Yang, R. Li, Q. Chen, ACS Applied Materials & Interfaces, 2015, 7, 6019 |
19. | Y.-X. Ge, P.-Y. Zhu, Y. Yu, L.-C. Zhang, C. Zhang, L. Liu, Journal of Chemistry A, 2022, 10, 23314 |
20. | J. Zhu, M. Chen, H. Wei, N. Yerra, N. Haldolaarachchige, Z. Luo, D. P. Young, T. C. Ho, S. Wei, Z. Guo, Nano Energy, 2014, 6, 180 |
21. | T. von Feilitzsch, P. Härter, O. Schiemann, M. E. Michel-Beyerle, U. E. Steiner, P. Gilch, Journal of the American Chemical Society, 2005, 127, 15228 |
22. | Y. Bian, W. Ding, L. Hu, X. Zhu, Y. Sun, Z. Sheng, The Journal of Physical Chemistry Letters, 2021, 12, 5294 |
23. | C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Journal of Applied Physics, 2008, 103, 031101 |
24. | R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Nature Photonics, 2015, 9, 61 |
25. | D. Sando, Y. Yang, E. Bousquet, C. Carrétéro, V. Garcia, S. Fusil, D. Dolfi, A. Barthélémy, P. Ghosez, L. Bellaiche, M. Bibes, Nature Communications, 2016, 7, 10718 |
26. | R. Guo, L. You, Y. Zhou, Z. Shiuh Lim, X. Zou, L. Chen, R. Ramesh, J. Wang, Nature Communications, 2013, 4, 1990 |
27. | M. Kumar, S. Shankar, A. Kumar, A. Anshul, M. Jayasimhadri, O. P. Thakur, Journal of Materials Science:Materials in Electronics, 2020, 31, 19487 |
28. | M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, Nature Reviews Materials, 2016, 1, 16046 |
29. | J. Ma, J. Hu, Z. Li, C.-W. Nan, Advanced Materials, 2011, 23, 1062 |
30. | S. Dong, H. Xiang, E. Dagotto, National Science Review, 2019, 6, 629 |
31. | F. Mushtaq, X. Chen, H. Torlakcik, C. Steuer, M. Hoop, E. C. Siringil, X. Marti, G. Limburg, P. Stipp, B. J. Nelson, S. Pane, Advanced Materials, 2019, 31, 1901378 |
32. | D. Kim, I. Efe, H. Torlakcik, A. Terzopoulou, A. Veciana, E. Siringil, F. Mushtaq, C. Franco, D. von Arx, S. Sevim, J. Puigmarti-Luis, B. Nelson, N. A. Spaldin, C. Gattinoni, X. Z. Chen, S. Pane, Advanced Materials, 2022, 34, 2110612 |
33. | F. Mushtaq, X.-z. Chen, A. Veciana, M. Hoop, B. J. Nelson, S. Pané, Applied Materials Today, 2022, 26, 101339 |
34. | J. Jang, C. B. Park, Science Advances, 2022, 8, eabn1675 |
35. | M. Ge, D. Xu, Z. Chen, C. Wei, Y. Zhang, C. Yang, Y. Chen, H. Lin, J. Shi, Nano Letters, 2021, 21, 6764 |
36. | N. A. Spaldin, R. Ramesh, Nature Materials, 2019, 18, 203 |
37. | J.-M. Hu, L.-Q. Chen, C.-W. Nan, Advanced Materials, 2015, 28, 15 |
38. | P. Lunkenheimer, J. Mueller, S. Krohns, F. Schrettle, A. Loidl, B. Hartmann, R. Rommel, M. de Souza, C. Hotta, J. A. Schlueter, M. Lang, Nature Materials, 2012, 11, 755 |
39. | H. Wang, Y. Dai, Z. Liu, Q. Xie, C. Liu, W. Lin, L. Liu, P. Yang, J. Wang, T. V. Venkatesan, G. M. Chow, H. Tian, Z. Zhang, J. Chen, Advanced Materials, 2020, 32, 1904415 |
40. | L. M. Garten, M. L. Staruch, K. Bussmann, J. Wollmershauser, P. Finkel, ACS Applied Materials & Interfaces, 2022, 14, 25701 |
41. | N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito, Nature, 2005, 436, 1136 |
42. | S. Newacheck, G. Youssef, Materials Horizons, 2020, 7, 2124 |
43. | E. Hassanpour, M. C. Weber, Y. Zemp, L. Kuerten, A. Bortis, Y. Tokunaga, Y. Taguchi, Y. Tokura, A. Cano, T. Lottermoser, M. Fiebig, Nature Communications, 2021, 12, 2755 |
44. | K. P. Remya, D. Prabhu, J. Joseyphus, A. C. Bose, C. Viswanathan, N. Ponpandian, Materials & Design, 2020, 192, 108694 |
45. | S. E. Shirsath, M. H. N. Assadi, J. Zhang, N. Kumar, A. S. Gaikwad, J. Yang, H. E. Maynard-Casely, Y. Y. Tay, J. Du, H. Wang, Y. Yao, Z. Chen, J. Zhang, S. Zhang, S. Li, D. Wang, ACS Nano, 2022, 16, 15413 |
46. | S. Deng, C. Xu, S. Cheng, W. Wang, J. Zhu, Y. Zhu, J. Chen, Advanced Functional Materials, 2022, 32, 2206050 |
47. | T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature, 2003, 426, 55 |
48. | C. Lu, M. Wu, L. Lin, J.-M. Liu, National Science Review, 2019, 6, 653 |
49. | J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Science, 2003, 299, 1719 |
50. | L. Yin, W. Mi, Nanoscale, 2020, 12, 477 |
51. | X. Yao, J. Ma, Y. Lin, C.-w. Nan, J. Zhang, Science China Materials, 2015, 58, 143 |
52. | R. Comes, H. Liu, M. Khokhlov, R. Kasica, J. Lu, S. A. Wolf, Nano Letters, 2012, 12, 2367 |
53. | S. M. Stratulat, X. Lu, A. Morelli, D. Hesse, W. Erfurth, M. Alexe, Nano Letters, 2013, 13, 3884 |
54. | X. Gao, B. J. Rodriguez, L. Liu, B. Birajdar, D. Pantel, M. Ziese, M. Alexe, D. Hesse, ACS Nano, 2010, 4, 1099 |
55. | M. Murakami, K.-S. Chang, M. A. Aronova, C.-L. Lin, M. H. Yu, J. H. Simpers, M. Wuttig, I. Takeuchi, C. Gao, B. Hu, S. E. Lofland, L. A. Knauss, L. A. Bendersky, Applied Physics Letters, 2005, 87, 112901 |
56. | P. Zhao, Z. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, M. Wuttig, I. Takeuchi, Applied Physics Letters, 2009, 94, 243507 |
57. | S. Koner, P. Deshmukh, A. Ahlawat, A. Sagdeo, R. Singh, A. K. Karnal, S. Satapathy, Journal of Materials Science: Materials in Electronics, 2021, 32, 21780 |
58. | Y. Wang, J. Hu, Y. Lin, C.-W. Nan, NPG Asia Materials, 2010, 2, 61 |
59. | W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, N. D. Mathur, Nature Materials, 2007, 6, 348 |
60. | G. Sreenivasulu, M. Popov, F. A. Chavez, S. L. Hamilton, P. R. Lehto, G. Srinivasan, Applied Physics Letters, 2014, 104, 042901 |
61. | S. Lan, C. Yu, F. Sun, Y. Chen, D. Chen, W. Mai, M. Zhu, Nano Energy, 2022, 93, 106792 |
62. | S. Li, Y.-H. Lin, B.-P. Zhang, Y. Wang, C.-W. Nan, The Journal of Physical Chemistry C, 2010, 114, 2903 |
63. | F. Gao, X. Y. Chen, K. B. Yin, S. Dong, Z. F. Ren, F. Yuan, T. Yu, Z. G. Zou, J.-M. Liu, Advanced Materials, 2007, 19, 2889 |
64. | S. Li, Y. Lin, Z. B. -P. Zhang, C. W. Nan, Chinese Journal of Inorganic Chemistry, 2010, 26, 495 |
65. | H. You, Z. Wu, L. Zhang, Y. Ying, Y. Liu, L. Fei, X. Chen, Y. Jia, Y. Wang, F. Wang, S. Ju, J. Qiao, C.-H. Lam, H. Huang, Angewandte Chemie International Edition, 2019, 58, 11779 |
66. | S. Li, B. AlOtaibi, W. Huang, Z. Mi, N. Serpone, R. Nechache, F. Rosei, Small, 2015, 11, 4018 |
67. | W. Huang, C. Harnagea, X. Tong, D. Benetti, S. Sun, M. Chaker, F. Rosei, R. Nechache, ACS Applied Materials & Interfaces, 2019, 11, 13185 |
68. | H. Khan, I. H. Lone, S. E. Lofland, K. V. Ramanujachary, T. Ahmad, International Journal of Hydrogen Energy, 2023, 48, 5493 |
69. | D. S. Vavilapalli, K. Srikanti, R. Mannam, B. Tiwari, M. K. K, M. S. R. Rao, S. Singh, ACS Omega, 2018, 3, 16643 |
70. | X. Li, H. Liu, Z. Chen, Q. Wu, Z. Yu, M. Yang, X. Wang, Z. Cheng, Z. Fu, Y. Lu, Nature Communications, 2019, 10, 1409 |
71. | D. Cao, Z. Wang, Nasori, L. Wen, Y. Mi, Y. Lei, Angewandte Chemie International Edition, 2014, 53, 11027 |
72. | D. You, L. Liu, Z. Yang, X. Xing, K. Li, W. Mai, T. Guo, G. Xiao, C. Xu, Nano Energy, 2022, 93, 106852 |
73. | D. Wang, M. Suo, S. Lai, L. Deng, J. Liu, J. Yang, S. Chen, M.-F. Wu, J.-P. Zou, Applied Catalysis B:Environmental, 2023, 321, 122054 |
74. | L. Xiong, J. Tang, Advanced Energy Materials, 2021, 11, 2003216 |
75. | J.-T. Lee, M.-C. Lin, J. M. Wu, Nano Energy, 2022, 98, 107280 |
76. | J. Zhang, G. Yuan, H. Wang, J. Wu, G. Yang, Q. Jia, S. Zhang, F. Li, H. Zhang, Chemical Engineering Journal, 2023, 451, 138182 |
77. | Z. Zhao, L. Wei, S. Li, L. Zhu, Y. Su, Y. Liu, Y. Bu, Y. Lin, W. Liu, Z. Zhang, Journal of Materials Chemistry A, 2020, 8, 16238 |
78. | F. Mushtaq, A. Asani, M. Hoop, X.-Z. Chen, D. Ahmed, B. J. Nelson, S. Pane, Advanced Functional Materials, 2016, 26, 6995 |
79. | L. Sun, S. Li, Y. Su, D. He, Z. Zhang, Applied Surface Science, 2019, 463, 474 |
80. | Y. Su, Z. Zhao, S. Li, F. Liu, Z. Zhang, Inorganic Chemistry Frontiers, 2018, 5, 3074 |
81. | S. Li, Z. Zhao, J. Li, H. Liu, M. Liu, Y. Zhang, L. Su, A. I. Pérez-Jiménez, Y. Guo, F. Yang, Y. Liu, J. Zhao, J. Zhang, L.-D. Zhao, Y. Lin, Small, 2022, 18, 2202507 |
82. | J. Wang, Z. Huang, L. Lu, Q. Jia, L. Huang, S. Chang, M. Zhang, Z. Zhang, S. Li, D. He, W. Wu, S. Zhang, N. Toshima, H. Zhang, Green Chemistry, 2020, 22, 1269 |
83. | M. Dong, X. Wang, X. Z. Chen, F. Mushtaq, S. Deng, C. Zhu, H. Torlakcik, A. Terzopoulou, X. H. Qin, X. Xiao, J. Puigmartí‐Luis, H. Choi, A. P. Pêgo, Q. D. Shen, B. J. Nelson, S. Pané, Advanced Functional Materials, 2020, 30, 1910323 |
84. | F. Mushtaq, H. Torlakcik, Q. Vallmajo-Martin, E. C. Siringil, J. Zhang, C. Röhrig, Y. Shen, Y. Yu, X.-Z. Chen, R. Müller, B. J. Nelson, S. Pané, Applied Materials Today, 2019, 16, 290 |
85. | Q. Deng, L. Zhang, X. Liu, Y. You, J. Ren, X. Qu, Chem Commun (Camb), 2022, 58, 7634 |
86. | R. Dhanalakshmi, J. C. Denardin, Journal of Magnetism and Magnetic Materials, 2022, 562, 169788 |
87. | F. Mushtaq, X. Chen, H. Torlakcik, B. J. Nelson, S. Pané, Nano Research, 2020, 13, 2183 |
88. | M. J. PourhosseiniAsl, A. Berbille, J. Tian, F. Du, Z. Yu, Z. Li, S. Guo, K. Ren, S. Dong, Materials Today Chemistry, 2023, 29, 101439 |
89. | A. Kumar, S. Ning, T. Su, E. Cho, J. M. LeBeau, C. A. Ross, Advanced Electronic Materials, 2022, 8, 2200036 |
90. | R. Wu, D. Zhang, T. Maity, P. Lu, J. Yang, X. Gao, S. Zhao, X. Wei, H. Zeng, A. Kursumovic, G. Tian, W. Li, C. Yun, Y. Wang, Z. Ren, Z. Zhou, M. Liu, K. H. L. Zhang, Q. Jia, J. Yang, H. Wang, J. L. MacManus-Driscoll, Nature Electronics, 2021, 4, 333 |
91. | M. M. Fernandes, P. Martins, D. M. Correia, E. O. Carvalho, F. M. Gama, M. Vazquez, C. Bran, S. Lanceros-Mendez, ACS Applied Bio Materials, 2021, 4, 559 |
92. | Y. Long, J. Qiu, X. He, Q. Chang, Z. Hu, H. Liu, AIP Advances, 2017, 7, 125029 |
93. | A. Omelyanchik, V. Antipova, C. Gritsenko, V. Kolesnikova, D. Murzin, Y. Han, A. V. Turutin, I. V. Kubasov, A. M. Kislyuk, T. S. Ilina, D. A. Kiselev, M. I. Voronova, M. D. Malinkovich, Y. N. Parkhomenko, M. Silibin, E. N. Kozlova, D. Peddis, K. Levada, L. Makarova, A. Amirov, V. Rodionova, Nanomaterials (Basel), 2021, 11, 1154 |
94. | Y. Bitla, Y.-H. Chu, Journal of Physics D: Applied Physics, 2018, 51, 234006 |
95. | M. G. Praveena, S. Thoufeeq, B. Manikanta, M. T. Rahul, R. N. Bhowmik, S. S. Nair, N. Kalarikkal, E. M. Mohammed, M. S. Kala, M. R. Anantharaman, Solid State Communications, 2022, 354, 114865 |
96. | V. F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, S. Lanceros-Mendez, Advanced Healthcare Materials, 2018, 7, 1700845 |
97. | A. V. Turutin, I. V. Kubasov, A. M. Kislyuk, V. V. Kuts, M. D. Malinkovich, Y. N. Parkhomenko, N. A. Sobolev, Nanobiotechnology Reports, 2022, 17, 261 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Representative applications of multiferroic magnetoelectric nanocomposites in catalysis driven by magnetic fields.
a Hydrogen evolution curves of multiferroic CFO/BFO composites under an AC magnetic field. Influence of b frequency and c intensity of applied magnetic field on hydrogen evolution. d Calculated BFO (001) slabs and schematic diagrams of the band bending caused by the reversal of the polarization for up- or down-polarization states. e Proposed mechanisms for the polarization reversal by magnetoelectric coupling in the core–shell CFO/BFO nanoparticles for driving hydrogen production reaction.[32] Copyright 2022, Wiley-VCH.
a Mechanism illustration/experimental probing and COMSOL simulations for the magnetostrictive-piezoelectric catalytic effect under magnetic field over CFO/BFO nanocomposites.[35] Copyright 2021, American Chemical Society. b Schematic illustration of the fabrication process of biodegradable soft helical microswimmers based on CFO/BFO nanocomposites and the corresponding optical image.[83] Copyright 2020, Wiley-VCH. c Schematic illustration of magnetoelectric-catalytic dissociation of Alzheimer’s Aβ aggregate structure using CFO/BFO nanoparticles under a low-frequency magnetic field.[34] Copyright 2022, Science.
a Digital and SEM image of ZnO nanorods array grown on a Metglas foil. b Kinetic rate for the degradation of indigo carmine under different conditions. c The magnetic flux density distribution in ZnO nanorods and Metglas under uniform magnetic field, and d the magnetoelectric potential distribution in a single ZnO nanorod under lateral deformation. e Schematic illustration of the magnetoelectric-photocatalytic mechanism for organic pollutant degradation process.[88] Copyright 2023, Elsevier.