Citation: | Xueting Wu, Lingling Li, Jing Pan, Xiao Wang, Huabin Zhang, et al. CeO2 Modified Ni-MOF as an Efficient Catalyst for Electrocatalytic Urea Oxidation. Materials Lab 2022, 1, 220009. doi: 10.54227/mlab.20220009 |
The development of cost-efficient electrocatalysts for urea oxidation reaction (UOR) is a challenge due to the slow kinetics. In this work, we demonstrated a one-pot hydrothermal synthetic method to fabricate CeO2 modified Ni-MOF nanosheets (NSs). When evaluted as UOR catalysts, the 3% CeO2/Ni-MOF possesses outstanding catalytic activity, achieving the current density of 10 mA cm−2 at a low potential of 1.356 V with a small Tafel slope of 13.83 mV dec−1. It is considered that the unique interactions between CeO2 nanoparticles (NPs) and Ni-MOF NSs play the significant role in the enhancement of the catalytic performance by inducing the formation of abundant defects and optimized surface states.
1. | X. J. Zhu, X. Y. Dou, J. Dai, X. D. An, Y. Q. Guo, L. D. Zhang, S. Tao, J. Y. Zhao, W. S. Chu, X. C. Zeng, C. Z. Wu, Y. Xie, Angew. Chem. Int. Ed., 2016, 55, 12465 |
2. | Y. B. Li, C. Zhong, J. Liu, X. Q. Zeng, S. X. Qu, X. Han, Y. P. Deng, W. B. Hu, J. Lu, Adv. Mater., 2018, 30, 1703657 |
3. | N. Senthilkumar, G. G. Kumar, A. Manthiram, Adv. Energy. Mater., 2018, 8, 1702207 |
4. | J. Y. Zhang, T. He, M. Wang, R. Qi, Y. Yan, Z. Dong, H. Liu, H. Wang, B. Y. Xia, Nano Energy, 2019, 60, 894 |
5. | S. J. Yao, S. K. Wolfson, B. K. Ahn, C. C. Liu, Nature, 1973, 241, 471 |
6. | Z. L. Wang, W. J. Liu, Y. M. Hu, M. L. Guan, L. Xu, H. P. Li, J. Bao, H. M. Li, Appl. Catal. B, 2020, 272, 118959 |
7. | H. C. A. Sun, W. Zhang, J. G. Li, Z. S. Li, X. Ao, K. H. Xue, K. K. Ostrikov, J. Tang, C. D. Wang, Appl. Catal. B, 2021, 284, 119740 |
8. | N. Wu, R. H. Guo, X. Zhang, N. Gao, X. Y. Chi, D. L. Cao, T. P. Hu, J. Alloys Compd., 2021, 870, 159408 |
9. | L. P. Wang, Y. J. Zhu, Y. Z. Wen, S. Y. Li, C. Y. Cui, F. L. Ni, Y. X. Liu, H. P. Lin, Y. Y. Li, H. S. Peng, B. Zhang, Angew. Chem. Int. Ed., 2021, 60, 10577 |
10. | H. Jiang, M. Sun, S. Wu, B. Huang, C. S. Lee, W. Zhang, Adv. Funct. Mater., 2021, 31, 2104951 |
11. | L. Xia, Y. Liao, Y. Qing, H. Xu, Z. Gao, W. Li, Y. Wu, ACS Appl. Energy Mater., 2020, 3, 2996 |
12. | B. Zhu, Z. Liang, R. Zou, Small, 2020, 16, 1906133 |
13. | S. Chen, J. J. Duan, A. Vasileff, S. Z. Qiao, Angew. Chem. Int. Ed., 2016, 55, 3804 |
14. | X. Zhang, Y. Y. Liu, Q. Z. Xiong, G. Q. Liu, C. J. Zhao, G. Z. Wang, Y. X. Zhang, H. M. Zhang, H. J. Zhao, Electrochim. Acta, 2017, 254, 44 |
15. | Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Norskov, T. F. Jaramillo, Science, 2017, 355, eaad4998 |
16. | M. P. Browne, Z. Sofer, M. Pumera, Energy Environ. Sci., 2019, 12, 41 |
17. | H. Liu, S. Zhu, Z. Cui, Z. Li, S. Wu, Y. Liang, Nanoscale, 2021, 13, 1759 |
18. | G. Yang, Y. Jiao, H. Yan, C. Tian, H. Fu, Small Struct., 2021, 2, 2100095 |
19. | J. Xie, L. Gao, S. Cao, W. Liu, F. Lei, P. Hao, X. Xia, B. Tang, J. Mater. Chem. A, 2019, 7, 13577 |
20. | D. D. Zhu, C. X. Guo, J. L. Liu, L. Wang, Y. Dub, S. Z. Qiao, Chem. Commun., 2017, 53, 10906 |
21. | J. F. Xie, W. W. Liu, F. C. Lei, X. D. Zhang, H. C. Qu, L. Gao, P. Hao, B. Tang, Y. Xie, Chem. Eur. J., 2018, 24, 18408 |
22. | L. Wang, L. Ren, X. Wang, X. Feng, J. Zhou, B. Wang, ACS Appl. Mater. Inter., 2018, 10, 4750 |
23. | L. S. Zhang, L. P. Wang, H. P. Lin, Y. X. Liu, J. Y. Ye, Y. Z. Wen, A. Chen, L. Wang, F. L. Ni, Z. Y. Zhou, S. G. Sun, Y. Y. Li, B. Zhang, H. S. Peng, Angew. Chem. Int. Ed., 2019, 58, 16820 |
24. | D. A. Daramola, D. Singh, G. G. Botte, J. Phys. Chem. A, 2010, 114, 11513 |
25. | F. P. Cheng, Z. J. Li, L. Wang, B. Yang, J. G. Lu, L. C. Lei, T. Y. Ma, Y. Hou, Mater. Horiz., 2021, 8, 556 |
26. | F. L. Li, P. T. Wang, X. Q. Huang, D. J. Young, H. F. Wang, P. Braunstein, J. P. Lang, Angew. Chem. Int. Ed., 2019, 58, 7051 |
27. | K. Rui, G. Zhao, Y. Chen, Y. Lin, Q. Zhou, J. Chen, J. Zhu, W. Sun, W. Huang, S. X. Dou, Adv. Funct. Mater., 2018, 28, 1801554 |
28. | Y. Tong, P. Z. Chen, M. X. Zhang, T. P. Zhou, L. D. Zhang, W. S. Chu, C. Z. Wu, Y. Xie, ACS Catal., 2018, 8, 1 |
29. | F. L. Li, Q. Shao, X. Huang, J. P. Lang, Angew. Chem. Int. Ed., 2018, 57, 1888 |
30. | T. Y. Kou, S. W. Wang, J. L. Hauser, M. P. Chen, S. R. J. Oliver, Y. F. Ye, J. H. Guo, Y. Li, ACS Energy Lett., 2019, 4, 622 |
31. | W. C. Records, Y. Yoon, J. F. Ohmura, N. Chanut, A. M. Belcher, Nano Energy, 2019, 58, 167 |
32. | X. L. Chen, X. Zhong, B. W. Yuan, S. Q. Li, Y. B. Gu, Q. Q. Zhang, G. L. Zhuang, X. N. Li, S. W. Deng, J. G. Wang, Green Chem., 2019, 21, 578 |
33. | Y. Zhai, X. Ren, J. Yan, S. Liu, Small Struct., 2021, 2, 2000096 |
34. | L. N. Sha, K. Ye, G. Wang, J. Q. Shao, K. Zhu, K. Cheng, J. Yan, G. L. Wang, D. X. Cao, Chem. Eng. J., 2019, 359, 1652 |
35. | H. Xu, Z.-X. Shi, Y.-X. Tong, G.-R. Li, Adv. Mater., 2018, 30, 1703657 |
36. | G. L. Lu, H. Y. Zheng, J. J. Lv, G. Wang, X. B. Huang, J. Power Sources, 2020, 480, 229091 |
37. | Y. Liu, C. Ma, Q. Zhang, W. Wang, P. Pan, L. Gu, D. Xu, J. Bao, Z. Dai, Adv. Mater., 2019, 31, 1900062 |
38. | D. D. Zhao, Y. C. Pi, Q. Shao, Y. G. Feng, Y. Zhang, X. Q. Huang, ACS Nano, 2018, 12, 6245 |
39. | J. Yu, Q. Cao, Y. Li, X. Long, S. Yang, J. K. Clark, M. Nakabayashi, N. Shibata, J. J. Delaunay, ACS Catal., 2019, 9, 1605 |
40. | X. J. Feng, Y. L. Shi, Y. S. Wang, S. X. Min, Z. A. Hu, Chin. J. Appl. Chem., 2011, 28, 302 |
41. | D. Y. Liu, N. W. Yang, Q. Zeng, H. Liu, D. Chen, P. L. Cui, L. Xu, C. Q. Hu, J. Yang, Chin. Chem. Lett., 2021, 32, 3288 |
42. | J. H. Kim, K. Shin, K. Kawashima, D. H. Youn, J. Lin, T. E. Hong, Y. Liu, B. R. Wygant, J. Wang, G. Henkelman, C. B. Mullins, ACS Catal., 2018, 8, 4257 |
43. | W. Gao, Z. Xia, F. Cao, J. C. Ho, Z. Jiang, Y. Qu, Adv. Funct. Mater., 2018, 28, 1870071 |
44. | L. L. Zhang, J. Pan, Y. Long, J. Li, W. Li, S. Y. Song, Z. Shi, H. J. Zhang, Small, 2019, 15, 1903182 |
45. | L. N. Sha, J. L. Yin, K. Ye, G. Wang, K. Zhu, K. Cheng, J. Yan, G. L. Wang, D. X. Cao, J. Mater. Chem. A, 2019, 7, 9078 |
46. | J. P. Li, G. B. Zhao, H. Y. Zhao, N. N. Zhao, L. L. Lu, N. L. Liu, M. Wang, C. J. Ma, Q. Zhang, Y. P. Du, Nanoscale, 2021, 13, 3581 |
47. | G. Ma, Q. Xue, J. Y. Zhu, X. Y. Zhang, X. Wang, H. C. Yao, G. F. Zhou, Y. Chen, Appl. Catal. B, 2020, 265, 118567 |
48. | Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D. G. Evans, X. Duan, Adv. Mater., 2016, 28, 2337 |
49. | G. Chakraborty, I. H. Park, R. Medishetty, J. J. Vittal, Chem. Rev., 2021, 121, 3751 |
50. | S. Dang, Q. L. Zhu, Q. Xu, Nat. Rev. Mater., 2018, 3, 17075 |
51. | T. V. M. Sreekanth, G. R. Dillip, P. C. Nagajyothi, K. Yoo, J. Kim, Appl. Catal. B, 2021, 285, 119793 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Supporting_Information-MATLAB-2022-0009.R1 |
(a) Schematic illustration of the formation of CeO2/Ni-MOF. (b, c) SEM images, (d, e) TEM images, (f) HRTEM image and (g) elemental mapping images of 3% CeO2/Ni-MOF.
(a) XRD patterns and (b) FT-IR spectra of different catalysts. (c) XPS Ni 2p spectra of Ni-MOF and 3% CeO2/Ni-MOF. (d) XPS Ce 3d spectra of 3% CeO2/Ni-MOF.
(a) LSV curves of 3% CeO2/Ni-MOF in 1 M KOH electrolyte with and without 0.33 M urea. (b) LSV curves of CeO2 NPs, Ni-MOF, 1% CeO2/Ni-MOF, 3% CeO2/Ni-MOF and 5% CeO2/Ni-MOF in 1 M KOH electrolyte with 0.33 M urea. (c) Tafel plots, (d) potentials at 10 mA cm−2, (e) mass activity at η = 1.356 V, (f) TOF at η = 1.356 V, (g) current density differences at 0.25 V plotted against scan rate in a non-Faradaic and (h) Nyquist plots recorded at 0.483 V of Ni-MOF, 1% CeO2/Ni-MOF, 3% CeO2/Ni-MOF and 5% CeO2/Ni-MOF. (i) Chronopotentiometry curves of 3% CeO2/Ni-MOF at 10 mA cm−2.
XRD patterns of 3% CeO2/Ni-MOF during UOR process.