Citation: | Hongbo Zhao, Jikun Chen, Hai-Tian Zhang. Perovskite Nickelate Ionotronics for AI and Brain-Machine Interfaces. Materials Lab 2022, 1, 220038. doi: 10.54227/mlab.20220038 |
Human brain is the ultimate computing machine in nature. Creating brain-like devices that emulate how the brain works and can communicate with the brain is crucial for fabricating highly efficient computing circuits, monitoring the onset of diseases at early stages, and transferring information across brain-machine interfaces. Simultaneous transduction of ionic-electronic signals would be of particular interest in this context since ionic transmitters are the means of information transfer in human brain while traditional electronics utilize electrons or holes. In this perspective, we propose strongly correlated oxides (mainly focused on perovskite nickelates) as potential candidates for this purpose. The capability of reversibly accepting small ions and converting ionic signal to electrical signals renders perovskite nickelates strong candidates for neuromorphic computing and bioelectrical applications. We will discuss the mechanism behind the interplay between ionic doping and the resistivity modulation in perovskite nickelates. We will also present case studies of using the perovskite nickelates in neuromorphic computing and brain-machine interface applications. We then conclude by pointing out the challenges in this field and provide our perspectives. We hope the utilization of strong electron correlation in the perovskite nickelates will provide exciting new opportunities for future computation devices and brain-machine interfaces.
1. | S. Ramanathan, MRS Bulletin, 2018, 43, 534 |
2. | Y. Tuchman, T. N. Mangoma, P. Gkoupidenis, Y. van de Burgt, R. A. John, N. Mathews, S. E. Shaheen, R. Daly, G. G. Malliaras, A. Salleo, MRS Bulletin, 2020, 45, 619 |
3. | W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu, M. F. Chang, H. J. Yoo, H. Qian, H. Wu, Nature Electronics, 2020, 3, 371 |
4. | D. Marković, A. Mizrahi, D. Querlioz, J. Grollier, Nature Reviews Physics, 2020, 2, 499 |
5. | P. Ball, Nature, 2012, 492, 176 |
6. | Ray Kurzweil, The Age of Spiritual Machines: When Computers Exceed Human Intelligence, Penguin Books, England, 1999. |
7. | Z. Zhang, Y. Sun, H.-T. Zhang, Journal of Applied Physics, 2022, 131, 120901 |
8. | F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Materials Science and Engineering: R: Reports, 2014, 83, 1 |
9. | Z. Wang, H. Wu, G. W. Burr, C. S. Hwang, K. L. Wang, Q. Xia, J. J. Yang, Nature Reviews Materials, 2020, 5, 173 |
10. | H.-T. Zhang, P. Panda, J. Lin, Y. Kalcheim, K. Wang, J. W. Freeland, D. D. Fong, S. Priya, I. K. Schuller, S. K. R. S. Sankaranarayanan, K. Roy, S. Ramanathan, Applied Physics Reviews, 2020, 7, 011309 |
11. | J. Shi, Y. Zhou, S. Ramanathan, Nature Communications, 2014, 5, 4860 |
12. | Y. Sun, M. Kotiuga, D. Lim, B. Narayanan, M. Cherukara, Z. Zhang, Y. Dong, R. Kou, C.-J. Sun, Q. Lu, I. Waluyo, A. Hunt, H. Tanaka, A. N. Hattori, S. Gamage, Y. Abate, V. G. Pol, H. Zhou, S. K. R. S. Sankaranarayanan, B. Yildiz, K. M. Rabe, S. Ramanathan, Proceedings of the National Academy of Sciences, 2018, 115, 9672 |
13. | X. Zhang, Materials Research Letters, 2020, 8, 49 |
14. | N. A. Spaldin, R. Ramesh, Nature Materials, 2019, 18, 203 |
15. | L. Lou, Y. Li, X. Li, H. Li, W. Li, Y. Hua, W. Xia, Z. Zhao, H. Zhang, M. Yue, X. Zhang, Advanced Materials, 2021, 33, 2102800 |
16. | G. Huang, X. Li, L. Lou, Y. Hua, G. Zhu, M. Li, H.-T. Zhang, J. Xiao, B. Wen, M. Yue, X. Zhang, Small, 2018, 14, 1800619 |
17. | X. Li, L. Lou, W. Song, Q. Zhang, G. Huang, Y. Hua, H.-T. Zhang, J. Xiao, B. Wen, X. Zhang, Nano Letters, 2017, 17, 2985 |
18. | H.-T. Zhang, Z. Zhang, H. Zhou, H. Tanaka, D. D. Fong, S. Ramanathan, Advances in Physics: X, 2019, 4, 1523686 |
19. | G. Catalan, Phase Transitions, 2008, 81, 729 |
20. | J. Chen, H. Hu, J. Wang, T. Yajima, B. Ge, X. Ke, H. Dong, Y. Jiang, N. Chen, Materials Horizons, 2019, 6, 788 |
21. | Y. Zhou, X. Guan, H. Zhou, K. Ramadoss, S. Adam, H. Liu, S. Lee, J. Shi, M. Tsuchiya, D. D. Fong, S. Ramanathan, Nature, 2016, 534, 231 |
22. | H.-T. Zhang, T. J. Park, A. N. M. N. Islam, D. S. J. Tran, S. Manna, Q. Wang, S. Mondal, H. Yu, S. Banik, S. Cheng, H. Zhou, S. Gamage, S. Mahapatra, Y. Zhu, Y. Abate, N. Jiang, S. K. R. S. Sankaranarayanan, A. Sengupta, C. Teuscher, S. Ramanathan, Science, 2022, 375, 533 |
23. | Z. Zhang, D. Schwanz, B. Narayanan, M. Kotiuga, J. A. Dura, M. Cherukara, H. Zhou, J. W. Freeland, J. Li, R. Sutarto, F. He, C. Wu, J. Zhu, Y. Sun, K. Ramadoss, S. S. Nonnenmann, N. Yu, R. Comin, K. M. Rabe, S. K. R. S. Sankaranarayanan, S. Ramanathan, Nature, 2018, 553, 68 |
24. | P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, D. S. Modha, Science, 2014, 345, 668 |
25. | S. Choi, J. Yang, G. Wang, Advanced Materials, 2020, 32, 2004659 |
26. | I. A. Zaluzhnyy, P. O. Sprau, R. Tran, Q. Wang, H.-T. Zhang, Z. Zhang, T. J. Park, N. Hua, B. Stoychev, M. J. Cherukara, M. V. Holt, E. Nazaretski, X. Huang, H. Yan, A. Pattammattel, Y. S. Chu, S. P. Ong, S. Ramanathan, O. G. Shpyrko, A. Frano, Physical Review Materials, 2021, 5, 095003 |
27. | U. S. Goteti, I. A. Zaluzhnyy, S. Ramanathan, R. C. Dynes, A. Frano, Proceedings of the National Academy of Sciences, 2021, 118, e2103934118 |
28. | C. Oh, M. Jo, J. Son, ACS Applied Materials & Interfaces, 2019, 11, 15733 |
29. | J. Shi, S. D. Ha, Y. Zhou, F. Schoofs, S. Ramanathan, Nature Communications, 2013, 4, 2676 |
30. | H.-T. Zhang, T. J. Park, I. A. Zaluzhnyy, Q. Wang, S. N. Wadekar, S. Manna, R. Andrawis, P. O. Sprau, Y. Sun, Z. Zhang, C. Huang, H. Zhou, Z. Zhang, B. Narayanan, G. Srinivasan, N. Hua, E. Nazaretski, X. Huang, H. Yan, M. Ge, Y. S. Chu, M. J. Cherukara, M. V. Holt, M. Krishnamurthy, O. G. Shpyrko, S. K. R. S. Sankaranarayanan, A. Frano, K. Roy, S. Ramanathan, Nature Communications, 2020, 11, 2245 |
31. | D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, H. Y. Hwang, Nature, 2019, 572, 624 |
32. | M. A. Lebedev, M. A. L. Nicolelis, Physiological Reviews, 2017, 97, 767 |
33. | M. J. Vansteensel, E. G. M. Pels, M. G. Bleichner, M. P. Branco, T. Denison, Z. V. Freudenburg, P. Gosselaar, S. Leinders, T. H. Ottens, M. A. van den Boom, P. C. van Rijen, E. J. Aarnoutse, N. F. Ramsey, the New England Journal of Medicine, 2016, 375, 2060 |
34. | S. Battistoni, V. Erokhin, S. Iannotta, Neural Plasticity, 2017, 2017, 6090312 |
35. | P. C. Harikesh, C.-Y. Yang, D. Tu, J. Y. Gerasimov, A. M. Dar, A. Armada-Moreira, M. Massetti, R. Kroon, D. Bliman, R. Olsson, E. Stavrinidou, M. Berggren, S. Fabiano, Nature Communications, 2022, 13, 901 |
36. | H.-T. Zhang, F. Zuo, F. Li, H. Chan, Q. Wu, Z. Zhang, B. Narayanan, K. Ramadoss, I. Chakraborty, G. Saha, G. Kamath, K. Roy, H. Zhou, A. A. Chubykin, S. K. R. S. Sankaranarayanan, J. H. Choi, S. Ramanathan, Nature Communications, 2019, 10, 1651 |
37. | Y. Sun, T. N. H. Nguyen, A. Anderson, X. Cheng, T. E. Gage, J. Lim, Z. Zhang, H. Zhou, F. Rodolakis, Z. Zhang, I. Arslan, S. Ramanathan, H. Lee, A. A. Chubykin, ACS Applied Materials & Interfaces, 2020, 12, 24564 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Perovskite nickelates for AI and brain-machine interfaces (BMIs).