Citation: | Jun Wang, Yanjie Zhai, Feng Dang, Lanling Zhao, Qing Xia, et al. Iridium-Decorated Carbon Nanotubes as Cathode Catalysts for Li-CO2 Batteries with a Highly Efficient Direct Li2CO3 Formation/Decomposition Capability. Materials Lab 2022, 1, 220010. doi: 10.54227/mlab.20220010 |
Rechargeable Li-CO2 batteries are regarded as the ideal application for the superior energy storage technology. However, they still limited by the lack of high efficiency electrocatalyst and limited understanding for the electrochemical reaction mechanism. In this work, we prepared the Ir-CNT composite by a rotation hydrothermal method, which remarkably promoted the reaction kinetics and enhanced the electrocatalytic performance of Li-CO2 batteries. The incorporation of Ir nanoparticles shows high activity enhancement for the adsorption of Li2CO3 species, which was confirmed by density functional theory (DFT) calculations. The Ir-CNT cathode exhibited an excellent ability to catalyze the formation and decomposition of Li2CO3 during cycling. Therefore, a large specific capacity of
1. | P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J. M. Tarascon, Nat. Mater., 2012, 11, 19 |
2. | A. C. Luntz and B. D. McCloskey, Chem. Rev., 2014, 114, 11721 |
3. | N. N. Feng, P. He and H. S. Zhou, Adv. Energy Mater., 2016, 6, 1502303 |
4. | R. H. Zhang, Y. Li, M. Wang, D. W. Li, J. J. Zhou, L. Xie, T. Wang, W. Tian, Y. J. Zhai and H. Y. Gong, Small, 2021, 17, 2101301 |
5. | J. J. Wang, Y. L. Li and X. L. Sun, Nano Energy, 2013, 2, 443 |
6. | D. S. Geng, N. Ding, T. S. A. Hor, S. W. Chien, Z. L. Liu, D. Wuu, X. L. Sun and Y. Zong, Adv. Energy Mater., 2016, 6, 1502164 |
7. | S. R. Gowda, A. Brunet, G. M. Wallraff and B. D. McCloskey, J. Phys. Chem. Lett., 2013, 4, 276 |
8. | Y. S. Mekonnen, K. B. Knudsen, J. S. Myrdal, R. Younesi, J. Hojberg, J. Hjelm, P. Norby and T. Vegge, J. Chem. Phys., 2014, 140, 121101 |
9. | F. J. Li, T. Zhang and H. S. Zhou, Energy & Environ. Sci., 2013, 6, 1125 |
10. | K. Takechi, T. Shiga and T. Asaoka, Chem. Commun., 2011, 47, 3463 |
11. | X. F. Hu, Z. F. Li, Y. R. Zhao, J. C. Sun, Q. Zhao, J. B. Wang, Z. L. Tao and J. Chen, Sci. Adv., 2017, 3, 7 |
12. | Y. L. Liu, R. Wang, Y. C. Lyu, H. L and L. Q. Chen, Energy Environ. Sci., 2014, 7, 677 |
13. | X. Li, S. X. Yang, N. N. Feng, P. He and H. S. Zhou, Chin. J. Cat., 2016, 37, 1016 |
14. | H. K. Lim, H. D. Lim, K. Y. Park, D. H. Seo, H. Gwon, J. Hong, W. A. Goddard, H. Kim and K. Kang, J. Am. Chem. Soc., 2013, 135, 9733 |
15. | Y. J. Zhai, J. Wang, Q. Gao, Y. Q. Fan, C. X. Hou, Y. Hou, H. Liu, Q. Shao, S. D. Wu, L. L. Zhao, T. Ding, F. Dang and Z. H. Guo, J. Catal., 2019, 377, 534 |
16. | Z. J. Xie, X. Zhang, Z. Zhang and Z. Zhou, Adv. Mater., 2017, 29, 1605891 |
17. | J. F. Sun, Q. Mu, H. Kimura, V. Murugadoss, M. X. He, W. Du, C. X. Hou, Adv. Compos. Hybrid Mater., 2022 |
18. | S. X. Yang, Y. Qiao, P. He, Y. J. Liu, Z. Cheng, J. J. Zhu and H. S. Zhou, Energy Environ. Sci., 2017, 10, 972 |
19. | J. M. Garcia-Lastra, J. S. G. Myrdal, R. Christensen, K. S. Thygesen and T. Vegge, J. Phys. Chem. C, 2013, 117, 5568 |
20. | H. Yuan, S. W. Yang, Y. Hao, J. Y. Guo, W. C. Zhang, Q. Yu, X. Z. Yin, Y. Q. Tan, Small Methods, 2022, 6, 2200129 |
21. | Z. S. Wang, H. Yuan, Y. Z. Zhang, D. D. Wang, J. P. Ju, Y. Q. Tan, J. Mater. Sci. Technol., 2022, 101, 264 |
22. | Y. B. Chen, Z. Li, D. D. Wang, H. Yuan, H. Z. Zhang, Y. Q. Tan, Compos. Commun., 2021, 26, 100774 |
23. | H. Yuan, G. Z. Li, E. H. Dai, G. L. Lu, X. Y. Huang, L. Y. Hao, Y. Q. Tan, Chin. J. Chem., 2020, 38, 1767 |
24. | Y. J. Zhai, H. Tong, J. L. Deng, G. Y. Li, Y. Hou, R. H. Zhang, J. Wang, Y. Y. Lu, K. Liang, P. Chen, F. Dang and B. Kong, Energy Storage Mater., 2021, 43, 391 |
25. | Y. L. Li, H. Yuan, Y. B. Chen, X. Y. Wei, K. Y. Sui, Y. Q. Tan, J. Mater. Sci. Technol., 2021, 74, 189 |
26. | Y. K. Zhao, Z. Yang, W. X. Fan, Y. C. Wang, G. Z. Li, H. L. Cong, H. Yuan, Arab. J. Chem., 2020, 13, 3266 |
27. | M. H. Li, Y. Y. Ma, J. Chen, R. Lawrence, W. Luo, M. Sacchi, W. Jiang, J. P. Yang, Angew. Chem. Int. Ed., 2021, 133, 11588 |
28. | E. H. Dai, G. Z. Li, G. X. Lu, W. Wang, Z. D. Han, Z. Y. Song, Q. Zhang, H. Yuan, X. Y. Zhang, J. Ind. Text., 2020 |
29. | Q. H. Deng, Y. Yang, S. Y. Qu, W. J. Wang, Y. K. Zhang, X. Y. Ma, W. W. Yan and Y. W. Zhang, Energy Storage Mater., 2021, 42, 484 |
30. | Y. P. Ma, X. B. Xie, W. Y. Yang, Z. P. Yu, X. Q. Sun, Y. P. Zhang, X. Y. Yang, H. Kimura, C. X. Hou, Z. H. Guo, W. Du, Adv. Compos. Hybrid Mater., 2021, 4, 906 |
31. | G. J. Zhu, R. Guo, W. Luo, H. K. Liu, W. Jiang, S. X. Dou, J. P. Yang, Natl. Sci. Rev., 2021, 8, nwaa152 |
32. | Z. P. Han, X. Y. Zhang, H. Yuan, Z. D. Li, G. Z. Li, H. Y. Zhang, Y. Q. Tan, J. Power Sources, 2022, 521, 230956 |
33. | G. Z. Li, H. Yuan, J. J. Mou, E. Dai, H. Y. Zhang, Z. D. Li, Y. K. Zhao, Y. F. Dai, X. Y. Zhang, Compos. Commun., 2022, 29, 101043 |
34. | X. Zhang, Q. Zhang, Z. Zhang, Y. N. Chen, Z. J. Xie, J. P. Wei and Z. Zhou, Chem. Commun., 2015, 51, 14636 |
35. | Z. Zhang, Q. Zhang, Y. N. Chen, J. Bao, X. L. Zhou, Z. J. Xie, J. P. Wei and Z. Zhou, Angew Chem. Int. Ed., 2015, 54, 6550 |
36. | Y. Y. Hou, J. Z. Wang, L. L. Liu, Y. Q. Liu, S. L. Chou, D. Q. Shi, H. K. Liu, Y. P. Wu, W. M. Zhang and J. Chen, Adv. Funct. Mater., 2017, 27, 1700564 |
37. | M. S. Hong, H. C. Choi and H. R. Byon, Chem. Mater., 2015, 27, 2234 |
38. | S. Kumar, S. Chinnathambi and N. Munichandraiah, New J. Chem., 2015, 39, 7066 |
39. | W. Zhou, Y. Cheng, X. F. Yang, B. S. Wu, H. J. Nie, H. Z. Zhang and H. M. Zhang, J. Mater. Chem. A, 2015, 3, 14556 |
40. | J. Lu, Y. Jung Lee, X. Y. Luo, K. Chun Lau, M. Asadi, H. H. Wang, S. Brombosz, J. G. Wen, D. Y. Zhai, Z. H. Chen, D. J. Miller, Y. Sub Jeong, J. B. Park, Z. G. Fang, B. Kumar, A. Salehi-Khojin, Y. K. Sun, L. A. Curtiss and K. Amine, Nature, 2016, 529, 377 |
41. | S. Song, W. Xu, J. Zheng, L. Luo, M. H. Engelhard, M. E. Bowden, B. Liu, C. M. Wang and J. G. Zhang, Nano Lett., 2017, 17, 1417 |
42. | G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54, 11169 |
43. | H. S. Oh, H. N. Nong, T. Reier, M. Gliech and P. Strasser, Chem. Sci., 2015, 6, 3321 |
44. | L. Geng, S. S. Xu, J. C. Liu, A. R. Guo and F. Hou, Electroanalysis, 2017, 29, 778 |
45. | C. Y. Wang, Q. M. Zhang, X. Zhang, X. G. Wang, Z. J. Xie and Z. Zhou, Small, 2018, 14, 1800641 |
46. | Y. J. Zhai, W. Y. Yang, X. B. Xie, X. Q. Sun, J. Wang, X. Y. Yang, N. Naik, H. Kimura, W. Du, Z. H. Guo and C. X. Hou, Inorg. Chem. Front., 2022, 9, 1115 |
47. | Y. Xing, Y. Yang, D. H. Li, M. C. Luo, N. Chen, Y. S. Ye, J. Qian, L. Li, D. J. Yang, F. Wu, R. J. Chen and S. J. Guo, Adv. Mater., 2018, 30, 1803124 |
48. | S. X. Yang, P. He and H. S. Zhou, Energy Environ. Sci., 2016, 9, 1650 |
49. | F. H. Ye, L. L. Gong, Y. D. Long, S. N. Talapaneni, L. P. Zhang, Y. Xiao, D. Liu, C. G. Hu and L. M. Dai, Adv. Energy Mater., 2021, 11, 2101390 |
50. | Y. J. Mao, C. Tang, Z. C. Tang, J. Xie, Z. Chen, J. Tu, G. S. Cao and X. B. Zhao, Energy Storage Mater., 2019, 18, 405 |
51. | M. H. Brooker and J. F. Wang, Spectrochim Acta A Mol. Spectrosc., 1992, 48, 999 |
52. | Y. Qiao, J. Yi, S. C. Wu, Y. Liu, S. X. Yang, P. He and H. S. Zhou, Joule, 2017, 1, 359 |
53. | Z. Q. Zhuo, K. H. Dai, R. M. Qiao, R. Wang, J. P. Wu, Y. L. Liu, J. Y. Peng, L. Q. Chen, F. Pan, Z. X. Shen, G. Liu, H. Li, T. P. Devereaux and W. L. Yang, Joule, 2021, 5, 975 |
54. | K. Nemeth and G. Srajer, RSC Adv., 2014, 4, 1879 |
55. | M. Goodarzi, F. Nazari and F. Illas, J. Phys. Chem. C, 2018, 122, 25776 |
56. | J. W. Zhou, X. L. Li, C. Yang, Y. C. Li, K. K. Guo, J. J. Cheng, D. W. Yuan, C. H. Song, J. Lu and B. Wang, Adv. Mater., 2019, 31, 1804439 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Supporting_Information-2022-0010.R1 |
Schematic representation of preparing Ir-CNT composite.
(a,b) TEM images with (c) SAED pattern and (d) SEM image with EDS element mapping images of (e) Ir and (f) C elements of the Ir-CNT composite.
(a) XRD, high-resolution (b) Ir 4f XPS spectra, (c) TGA and (d) Raman data of Ir-CNT composite.
(a) Initial discharge/charge profiles at 100 mAh g−1 and (c) CV curves of CNT and Ir-CNT cathodes; (b) rate capability of Ir-CNT cathodes at 100, 200 and 400 mAh g−1; (f) cycling performance with typical discharge/charge profiles of (d) CNT and (e) Ir-CNT cathodes with a fixed capacity of
Ex-situ FESEM images of Ir-CNT cathodes at (a) 1st discharging, (b) 1st charging and (c) 100th charging stage; (e) ex-situ TEM image and corresponding (f) SAED pattern at 1st discharging; (d) XRD data of Ir-CNT cathodes at different stages; (g, h) comparison of adsorption energy between Li2C2O4 and Li2CO3 monomer on Ir (111).