Jun Wang, Yanjie Zhai, Feng Dang, Lanling Zhao, Qing Xia, et al. Iridium-Decorated Carbon Nanotubes as Cathode Catalysts for Li-CO2 Batteries with a Highly Efficient Direct Li2CO3 Formation/Decomposition Capability. Materials Lab 2022, 1, 220010. doi: 10.54227/mlab.20220010
Citation: Jun Wang, Yanjie Zhai, Feng Dang, Lanling Zhao, Qing Xia, et al. Iridium-Decorated Carbon Nanotubes as Cathode Catalysts for Li-CO2 Batteries with a Highly Efficient Direct Li2CO3 Formation/Decomposition Capability. Materials Lab 2022, 1, 220010. doi: 10.54227/mlab.20220010

Research Article

Iridium-Decorated Carbon Nanotubes as Cathode Catalysts for Li-CO2 Batteries with a Highly Efficient Direct Li2CO3 Formation/Decomposition Capability

More Information
  • Corresponding authors: dangfeng@sdu.edu.cn; xiao1.zhang@polyu.edu.hk
  • ‡ These authors contributed equally.

  • Rechargeable Li-CO2 batteries are regarded as the ideal application for the superior energy storage technology. However, they still limited by the lack of high efficiency electrocatalyst and limited understanding for the electrochemical reaction mechanism. In this work, we prepared the Ir-CNT composite by a rotation hydrothermal method, which remarkably promoted the reaction kinetics and enhanced the electrocatalytic performance of Li-CO2 batteries. The incorporation of Ir nanoparticles shows high activity enhancement for the adsorption of Li2CO3 species, which was confirmed by density functional theory (DFT) calculations. The Ir-CNT cathode exhibited an excellent ability to catalyze the formation and decomposition of Li2CO3 during cycling. Therefore, a large specific capacity of 10325.9 mAh g−1 and an excellent high rate cyclability with stably over 100 cycles were achieved. The three-dimensional Ir-CNT cathode could spontaneously advance the electrocatalytic activity of CO2 oxidation and precipitation to increase specific capacities and cycle life, significantly boosting the practical application of Li-CO2 batteries.


  • 加载中
  • 1. P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J. M. Tarascon, Nat. Mater., 2012, 11, 19
    2. A. C. Luntz and B. D. McCloskey, Chem. Rev., 2014, 114, 11721
    3. N. N. Feng, P. He and H. S. Zhou, Adv. Energy Mater., 2016, 6, 1502303
    4. R. H. Zhang, Y. Li, M. Wang, D. W. Li, J. J. Zhou, L. Xie, T. Wang, W. Tian, Y. J. Zhai and H. Y. Gong, Small, 2021, 17, 2101301
    5. J. J. Wang, Y. L. Li and X. L. Sun, Nano Energy, 2013, 2, 443
    6. D. S. Geng, N. Ding, T. S. A. Hor, S. W. Chien, Z. L. Liu, D. Wuu, X. L. Sun and Y. Zong, Adv. Energy Mater., 2016, 6, 1502164
    7. S. R. Gowda, A. Brunet, G. M. Wallraff and B. D. McCloskey, J. Phys. Chem. Lett., 2013, 4, 276
    8. Y. S. Mekonnen, K. B. Knudsen, J. S. Myrdal, R. Younesi, J. Hojberg, J. Hjelm, P. Norby and T. Vegge, J. Chem. Phys., 2014, 140, 121101
    9. F. J. Li, T. Zhang and H. S. Zhou, Energy & Environ. Sci., 2013, 6, 1125
    10. K. Takechi, T. Shiga and T. Asaoka, Chem. Commun., 2011, 47, 3463
    11. X. F. Hu, Z. F. Li, Y. R. Zhao, J. C. Sun, Q. Zhao, J. B. Wang, Z. L. Tao and J. Chen, Sci. Adv., 2017, 3, 7
    12. Y. L. Liu, R. Wang, Y. C. Lyu, H. L and L. Q. Chen, Energy Environ. Sci., 2014, 7, 677
    13. X. Li, S. X. Yang, N. N. Feng, P. He and H. S. Zhou, Chin. J. Cat., 2016, 37, 1016
    14. H. K. Lim, H. D. Lim, K. Y. Park, D. H. Seo, H. Gwon, J. Hong, W. A. Goddard, H. Kim and K. Kang, J. Am. Chem. Soc., 2013, 135, 9733
    15. Y. J. Zhai, J. Wang, Q. Gao, Y. Q. Fan, C. X. Hou, Y. Hou, H. Liu, Q. Shao, S. D. Wu, L. L. Zhao, T. Ding, F. Dang and Z. H. Guo, J. Catal., 2019, 377, 534
    16. Z. J. Xie, X. Zhang, Z. Zhang and Z. Zhou, Adv. Mater., 2017, 29, 1605891
    17. J. F. Sun, Q. Mu, H. Kimura, V. Murugadoss, M. X. He, W. Du, C. X. Hou, Adv. Compos. Hybrid Mater., 2022
    18. S. X. Yang, Y. Qiao, P. He, Y. J. Liu, Z. Cheng, J. J. Zhu and H. S. Zhou, Energy Environ. Sci., 2017, 10, 972
    19. J. M. Garcia-Lastra, J. S. G. Myrdal, R. Christensen, K. S. Thygesen and T. Vegge, J. Phys. Chem. C, 2013, 117, 5568
    20. H. Yuan, S. W. Yang, Y. Hao, J. Y. Guo, W. C. Zhang, Q. Yu, X. Z. Yin, Y. Q. Tan, Small Methods, 2022, 6, 2200129
    21. Z. S. Wang, H. Yuan, Y. Z. Zhang, D. D. Wang, J. P. Ju, Y. Q. Tan, J. Mater. Sci. Technol., 2022, 101, 264
    22. Y. B. Chen, Z. Li, D. D. Wang, H. Yuan, H. Z. Zhang, Y. Q. Tan, Compos. Commun., 2021, 26, 100774
    23. H. Yuan, G. Z. Li, E. H. Dai, G. L. Lu, X. Y. Huang, L. Y. Hao, Y. Q. Tan, Chin. J. Chem., 2020, 38, 1767
    24. Y. J. Zhai, H. Tong, J. L. Deng, G. Y. Li, Y. Hou, R. H. Zhang, J. Wang, Y. Y. Lu, K. Liang, P. Chen, F. Dang and B. Kong, Energy Storage Mater., 2021, 43, 391
    25. Y. L. Li, H. Yuan, Y. B. Chen, X. Y. Wei, K. Y. Sui, Y. Q. Tan, J. Mater. Sci. Technol., 2021, 74, 189
    26. Y. K. Zhao, Z. Yang, W. X. Fan, Y. C. Wang, G. Z. Li, H. L. Cong, H. Yuan, Arab. J. Chem., 2020, 13, 3266
    27. M. H. Li, Y. Y. Ma, J. Chen, R. Lawrence, W. Luo, M. Sacchi, W. Jiang, J. P. Yang, Angew. Chem. Int. Ed., 2021, 133, 11588
    28. E. H. Dai, G. Z. Li, G. X. Lu, W. Wang, Z. D. Han, Z. Y. Song, Q. Zhang, H. Yuan, X. Y. Zhang, J. Ind. Text., 2020
    29. Q. H. Deng, Y. Yang, S. Y. Qu, W. J. Wang, Y. K. Zhang, X. Y. Ma, W. W. Yan and Y. W. Zhang, Energy Storage Mater., 2021, 42, 484
    30. Y. P. Ma, X. B. Xie, W. Y. Yang, Z. P. Yu, X. Q. Sun, Y. P. Zhang, X. Y. Yang, H. Kimura, C. X. Hou, Z. H. Guo, W. Du, Adv. Compos. Hybrid Mater., 2021, 4, 906
    31. G. J. Zhu, R. Guo, W. Luo, H. K. Liu, W. Jiang, S. X. Dou, J. P. Yang, Natl. Sci. Rev., 2021, 8, nwaa152
    32. Z. P. Han, X. Y. Zhang, H. Yuan, Z. D. Li, G. Z. Li, H. Y. Zhang, Y. Q. Tan, J. Power Sources, 2022, 521, 230956
    33. G. Z. Li, H. Yuan, J. J. Mou, E. Dai, H. Y. Zhang, Z. D. Li, Y. K. Zhao, Y. F. Dai, X. Y. Zhang, Compos. Commun., 2022, 29, 101043
    34. X. Zhang, Q. Zhang, Z. Zhang, Y. N. Chen, Z. J. Xie, J. P. Wei and Z. Zhou, Chem. Commun., 2015, 51, 14636
    35. Z. Zhang, Q. Zhang, Y. N. Chen, J. Bao, X. L. Zhou, Z. J. Xie, J. P. Wei and Z. Zhou, Angew Chem. Int. Ed., 2015, 54, 6550
    36. Y. Y. Hou, J. Z. Wang, L. L. Liu, Y. Q. Liu, S. L. Chou, D. Q. Shi, H. K. Liu, Y. P. Wu, W. M. Zhang and J. Chen, Adv. Funct. Mater., 2017, 27, 1700564
    37. M. S. Hong, H. C. Choi and H. R. Byon, Chem. Mater., 2015, 27, 2234
    38. S. Kumar, S. Chinnathambi and N. Munichandraiah, New J. Chem., 2015, 39, 7066
    39. W. Zhou, Y. Cheng, X. F. Yang, B. S. Wu, H. J. Nie, H. Z. Zhang and H. M. Zhang, J. Mater. Chem. A, 2015, 3, 14556
    40. J. Lu, Y. Jung Lee, X. Y. Luo, K. Chun Lau, M. Asadi, H. H. Wang, S. Brombosz, J. G. Wen, D. Y. Zhai, Z. H. Chen, D. J. Miller, Y. Sub Jeong, J. B. Park, Z. G. Fang, B. Kumar, A. Salehi-Khojin, Y. K. Sun, L. A. Curtiss and K. Amine, Nature, 2016, 529, 377
    41. S. Song, W. Xu, J. Zheng, L. Luo, M. H. Engelhard, M. E. Bowden, B. Liu, C. M. Wang and J. G. Zhang, Nano Lett., 2017, 17, 1417
    42. G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54, 11169
    43. H. S. Oh, H. N. Nong, T. Reier, M. Gliech and P. Strasser, Chem. Sci., 2015, 6, 3321
    44. L. Geng, S. S. Xu, J. C. Liu, A. R. Guo and F. Hou, Electroanalysis, 2017, 29, 778
    45. C. Y. Wang, Q. M. Zhang, X. Zhang, X. G. Wang, Z. J. Xie and Z. Zhou, Small, 2018, 14, 1800641
    46. Y. J. Zhai, W. Y. Yang, X. B. Xie, X. Q. Sun, J. Wang, X. Y. Yang, N. Naik, H. Kimura, W. Du, Z. H. Guo and C. X. Hou, Inorg. Chem. Front., 2022, 9, 1115
    47. Y. Xing, Y. Yang, D. H. Li, M. C. Luo, N. Chen, Y. S. Ye, J. Qian, L. Li, D. J. Yang, F. Wu, R. J. Chen and S. J. Guo, Adv. Mater., 2018, 30, 1803124
    48. S. X. Yang, P. He and H. S. Zhou, Energy Environ. Sci., 2016, 9, 1650
    49. F. H. Ye, L. L. Gong, Y. D. Long, S. N. Talapaneni, L. P. Zhang, Y. Xiao, D. Liu, C. G. Hu and L. M. Dai, Adv. Energy Mater., 2021, 11, 2101390
    50. Y. J. Mao, C. Tang, Z. C. Tang, J. Xie, Z. Chen, J. Tu, G. S. Cao and X. B. Zhao, Energy Storage Mater., 2019, 18, 405
    51. M. H. Brooker and J. F. Wang, Spectrochim Acta A Mol. Spectrosc., 1992, 48, 999
    52. Y. Qiao, J. Yi, S. C. Wu, Y. Liu, S. X. Yang, P. He and H. S. Zhou, Joule, 2017, 1, 359
    53. Z. Q. Zhuo, K. H. Dai, R. M. Qiao, R. Wang, J. P. Wu, Y. L. Liu, J. Y. Peng, L. Q. Chen, F. Pan, Z. X. Shen, G. Liu, H. Li, T. P. Devereaux and W. L. Yang, Joule, 2021, 5, 975
    54. K. Nemeth and G. Srajer, RSC Adv., 2014, 4, 1879
    55. M. Goodarzi, F. Nazari and F. Illas, J. Phys. Chem. C, 2018, 122, 25776
    56. J. W. Zhou, X. L. Li, C. Yang, Y. C. Li, K. K. Guo, J. J. Cheng, D. W. Yuan, C. H. Song, J. Lu and B. Wang, Adv. Mater., 2019, 31, 1804439
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  • Supporting_Information-2022-0010.R1
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Information

Article Metrics

Article views(2906) PDF downloads(987) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint