Citation: | Yu Wu, Matthew F. Webster, Brian Joy, Steve Beyer, David Kunar, et al. Combined Purification and Crystal Growth of CsPbBr3 by Modified Zone Refining. Materials Lab 2022, 1, 220019. doi: 10.54227/mlab.20220019 |
The all-inorganic semiconducting perovskite Cesium Lead Bromide, CsPbBr3, exhibits promising properties for ionizing radiation detection applications. In this work, polycrystalline CsPbBr3 was synthesized from the melt of binary compounds CsBr and PbBr2. Moisture and oxides in the synthesized CsPbBr3 compounds were removed by a reduction process under hydrogen. The CsPbBr3 materials were purified and grown into high-quality single crystals
1. | T. E. Schlesinger, J. E. Toney, H. Yoon, E. Y. Lee, B. A. Brunett, L. Franks, R. B. James, Materials Science and Engineering: R: Reports, 2001, 32, 103 |
2. | S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, P. Ubertini, Sensors, 2009, 9, 3491 |
3. | H. H. Barrett, J. D. Eskin, H. B. Barber, Physical Review Letters, 1995, 75, 156 |
4. | P. M. Johns, J. C. Nino, Journal of Applied Physics, 2019, 126, 040902 |
5. | A. Mirzaei, J.-S. Huh, S. S. Kim, H. W. Kim, Electronic Materials Letters, 2018, 14, 261 |
6. | L. Gao, Q. Yan, Solar RRL, 2020, 4, 1900210 |
7. | B. D. Milbrath, A. J. Peurrung, M. Bliss, W. J. Weber, Journal of Materials Research, 2008, 23, 2561 |
8. | K. Hitomi, T. Tada, S. Kim, Y. Wu, T. Tanaka, T. Shoji, H. Yamazaki, K. Ishii, IEEE Trans. Nucl. Sci., 2011, 58, 1987 |
9. | C. Szeles, IEEE Trans. Nucl. Sci., 2004, 51, 1242 |
10. | W. Lin, Z. Liu, C. C. Stoumpos, S. Das, Y. He, I. Hadar, J. A. Peters, K. M. McCall, Y. Xu, D. Y. Chung, B. W. Wessels, M. G. Kanatzidis, Crystal Growth & Design, 2019, 19, 4738 |
11. | U. N. Roy, G. S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R. B. James, Scientific Reports, 2019, 9, 1620 |
12. | K. Hitomi, T. Shoji, K. Ishii, Journal of Crystal Growth, 2013, 379, 93 |
13. | G. F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, America, 2010. |
14. | M. Ahmadi, T. Wu, B. Hu, Advanced Materials, 2017, 29, 1605242 |
15. | X. Li, Y. C. Wang, L. Zhu, W. Zhang, H. Q. Wang, J. Fang, ACS Appl. Mater. Interfaces, 2017, 9, 31357 |
16. | Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, S. Tang, Q. Wang, X. Xiao, Y. Bai, Y. Deng, J. Huang, Nat. Commun., 2017, 8, 1890 |
17. | B. Han, B. Cai, Q. Shan, J. Song, J. Li, F. Zhang, J. Chen, T. Fang, Q. Ji, X. Xu, H. Zeng, Advanced Functional Materials, 2018, 28, 1804285 |
18. | H. Wei, J. Huang, Nature Communications, 2019, 10, 1066 |
19. | S. Yakunin, D. N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh, O. Nazarenko, D. Kreil, T. Nauser, M. V. Kovalenko, Nature Photonics, 2016, 10, 585 |
20. | J. Yu, G. Liu, C. Chen, Y. Li, M. Xu, T. Wang, G. Zhao, L. Zhang, Journal of Materials Chemistry C, 2020, 8, 6326 |
21. | B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, H.-G. Boyen, Advanced Energy Materials, 2015, 5, 1500477 |
22. | G. P. Nagabhushana, R. Shivaramaiah, A. Navrotsky, Proceedings of the National Academy of Sciences, 2016, 113, 7717 |
23. | C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels, M. G. Kanatzidis, Crystal Growth & Design, 2013, 13, 2722 |
24. | Y. He, L. Matei, H. J. Jung, K. M. McCall, M. Chen, C. C. Stoumpos, Z. Liu, J. A. Peters, D. Y. Chung, B. W. Wessels, M. R. Wasielewski, V. P. Dravid, A. Burger, M. G. Kanatzidis, Nature Communications, 2018, 9, 1609 |
25. | J. Kang, L.-W. Wang, The Journal of Physical Chemistry Letters, 2017, 8, 489 |
26. | J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, X. Zhan, The Journal of Physical Chemistry C, 2017, 121, 4917 |
27. | B. Murali, H. K. Kolli, J. Yin, R. Ketavath, O. M. Bakr, O. F. Mohammed, ACS Materials Letters, 2020, 2, 184 |
28. | X. Cheng, S. Yang, B. Cao, X. Tao, Z. Chen, Advanced Functional Materials, 2020, 30, 1905021 |
29. | D. Y. Chung, M. G. Kanatzidis, F. Meng, C. D. Malliakas, SPIE Optics + Photonics, San Diego, CA, USA, August 2016. |
30. | M. Zhang, Z. Zheng, Q. Fu, Z. Chen, J. He, S. Zhang, C. Chen, W. Luo, Journal of Crystal Growth, 2018, 484, 37 |
31. | K. Wang, L. Jing, Q. Yao, J. Zhang, X. Cheng, Y. Yuan, C. Shang, J. Ding, T. Zhou, H. Sun, W. Zhang, H. Li, The Journal of Physical Chemistry Letters, 2021, 12, 1904 |
32. | J.-L. Pouchou, F. Pichoir, Electron Probe Quantitation, Springer, Germany, 1991. |
33. | K. F. J. Heinrich, 11th Int. Congr. on X-Ray Optics and Microanalysis, London, Ontario, Canada, August 1986. |
34. | K. L. Williams, An introduction to X-ray spectrometry: X-ray fluorescence and electron microprobe analysis, Allen & Unwin Boston, America, 1987. |
35. | H. Zhang, F. Wang, Y. Lu, Q. Sun, Y. Xu, B.-B. Zhang, W. Jie, M. G. Kanatzidis, Journal of Materials Chemistry C, 2020, 8, 1248 |
36. | H. Kim, Y. Ogorodnik, A. Kargar, L. Cirignano, C. L. Thrall, W. Koehler, S. P. O'Neal, Z. He, E. Swanberg, S. A. Payne, M. R. Squillante, K. Shah, Frontiers in Physics, 2020, 8, 55 |
37. | A. Churilov, W. Higgins, G. Ciampi, H. Kim, L. Cirignano, F. Olschner, K. Shah, SPIE Optics+Photonics 2008, San Diego, CA, USA, August 2008. |
38. | U. Makanda, A. Voinot, R. Kandel, Y. Wu, M. Leybourne, P. Wang, Journal of Analytical Atomic Spectrometry, 2020, 35, 2672 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
System design for (a) H2 reduction and (b) Horizontal zone refining furnace.
Temperature profile for a typical zone-refining cycle, where the red region marks the temperature above the melting point (567
Main components of a fabricated CsPbBr3 test device.
Comparison of zone refining performances between two sealing techniques (a) sealing under a high vacuum, (b) sealing with 0.3 atm of H2 gas.
(a) and (b) CsPbBr3 bulk after zone refining. (c) As-cut crystal wafers. (d) The polished detector.
Raman spectra of black impurity. Insert shows the isolation of the black impurity from CsPbBr3 by sublimation.
Total impurity levels of samples
Photoresponse results of CsPbBr3 detectors from different samples with Ag/Ag contact. (a) sample 1100. (b) sample 1127. (c) sample 1149. (d) sample 1153. Current-voltage (I-V) curves of (e) sample
Pulse-height spectrum collected for the CsPbBr3 crystal device with a Ga\CsPbBr3\Ga configuration.