Yu Wu, Matthew F. Webster, Brian Joy, Steve Beyer, David Kunar, et al. Combined Purification and Crystal Growth of CsPbBr3 by Modified Zone Refining. Materials Lab 2022, 1, 220019. doi: 10.54227/mlab.20220019
Citation: Yu Wu, Matthew F. Webster, Brian Joy, Steve Beyer, David Kunar, et al. Combined Purification and Crystal Growth of CsPbBr3 by Modified Zone Refining. Materials Lab 2022, 1, 220019. doi: 10.54227/mlab.20220019

Research Article

Combined Purification and Crystal Growth of CsPbBr3 by Modified Zone Refining

Published as part of the Virtual Special Issue "Mercouri G. Kanatzidis at 65"

More Information
  • Corresponding author: wang.peng@queensu.ca
  • The all-inorganic semiconducting perovskite Cesium Lead Bromide, CsPbBr3, exhibits promising properties for ionizing radiation detection applications. In this work, polycrystalline CsPbBr3 was synthesized from the melt of binary compounds CsBr and PbBr2. Moisture and oxides in the synthesized CsPbBr3 compounds were removed by a reduction process under hydrogen. The CsPbBr3 materials were purified and grown into high-quality single crystals via a modified zone refining process. The single-crystal samples obtained from the combined zone-refining/crystal growth process exhibited total trace impurity levels below 1 ppm (w.t.). Obtained single crystals exhibited an electrical resistivity within a range of 108~109 Ω·cm. Stoichiometry imbalance was observed in the CsPbBr3 crystal growth. Around 1% Cs deficiency was observed in all the samples, despite different ratios between the starting materials of PbBr2 and CsBr. The positive impact of excess PbBr2 in starting materials was also revealed. With a slight excess Pb (2%), CsPbBr3 single crystals displayed significantly higher photosensitivity compared to the stoichiometric or excess Cs samples.


  • 加载中
  • 1. T. E. Schlesinger, J. E. Toney, H. Yoon, E. Y. Lee, B. A. Brunett, L. Franks, R. B. James, Materials Science and Engineering: R: Reports, 2001, 32, 103
    2. S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, P. Ubertini, Sensors, 2009, 9, 3491
    3. H. H. Barrett, J. D. Eskin, H. B. Barber, Physical Review Letters, 1995, 75, 156
    4. P. M. Johns, J. C. Nino, Journal of Applied Physics, 2019, 126, 040902
    5. A. Mirzaei, J.-S. Huh, S. S. Kim, H. W. Kim, Electronic Materials Letters, 2018, 14, 261
    6. L. Gao, Q. Yan, Solar RRL, 2020, 4, 1900210
    7. B. D. Milbrath, A. J. Peurrung, M. Bliss, W. J. Weber, Journal of Materials Research, 2008, 23, 2561
    8. K. Hitomi, T. Tada, S. Kim, Y. Wu, T. Tanaka, T. Shoji, H. Yamazaki, K. Ishii, IEEE Trans. Nucl. Sci., 2011, 58, 1987
    9. C. Szeles, IEEE Trans. Nucl. Sci., 2004, 51, 1242
    10. W. Lin, Z. Liu, C. C. Stoumpos, S. Das, Y. He, I. Hadar, J. A. Peters, K. M. McCall, Y. Xu, D. Y. Chung, B. W. Wessels, M. G. Kanatzidis, Crystal Growth & Design, 2019, 19, 4738
    11. U. N. Roy, G. S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R. B. James, Scientific Reports, 2019, 9, 1620
    12. K. Hitomi, T. Shoji, K. Ishii, Journal of Crystal Growth, 2013, 379, 93
    13. G. F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, America, 2010.
    14. M. Ahmadi, T. Wu, B. Hu, Advanced Materials, 2017, 29, 1605242
    15. X. Li, Y. C. Wang, L. Zhu, W. Zhang, H. Q. Wang, J. Fang, ACS Appl. Mater. Interfaces, 2017, 9, 31357
    16. Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, S. Tang, Q. Wang, X. Xiao, Y. Bai, Y. Deng, J. Huang, Nat. Commun., 2017, 8, 1890
    17. B. Han, B. Cai, Q. Shan, J. Song, J. Li, F. Zhang, J. Chen, T. Fang, Q. Ji, X. Xu, H. Zeng, Advanced Functional Materials, 2018, 28, 1804285
    18. H. Wei, J. Huang, Nature Communications, 2019, 10, 1066
    19. S. Yakunin, D. N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh, O. Nazarenko, D. Kreil, T. Nauser, M. V. Kovalenko, Nature Photonics, 2016, 10, 585
    20. J. Yu, G. Liu, C. Chen, Y. Li, M. Xu, T. Wang, G. Zhao, L. Zhang, Journal of Materials Chemistry C, 2020, 8, 6326
    21. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, H.-G. Boyen, Advanced Energy Materials, 2015, 5, 1500477
    22. G. P. Nagabhushana, R. Shivaramaiah, A. Navrotsky, Proceedings of the National Academy of Sciences, 2016, 113, 7717
    23. C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels, M. G. Kanatzidis, Crystal Growth & Design, 2013, 13, 2722
    24. Y. He, L. Matei, H. J. Jung, K. M. McCall, M. Chen, C. C. Stoumpos, Z. Liu, J. A. Peters, D. Y. Chung, B. W. Wessels, M. R. Wasielewski, V. P. Dravid, A. Burger, M. G. Kanatzidis, Nature Communications, 2018, 9, 1609
    25. J. Kang, L.-W. Wang, The Journal of Physical Chemistry Letters, 2017, 8, 489
    26. J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, X. Zhan, The Journal of Physical Chemistry C, 2017, 121, 4917
    27. B. Murali, H. K. Kolli, J. Yin, R. Ketavath, O. M. Bakr, O. F. Mohammed, ACS Materials Letters, 2020, 2, 184
    28. X. Cheng, S. Yang, B. Cao, X. Tao, Z. Chen, Advanced Functional Materials, 2020, 30, 1905021
    29. D. Y. Chung, M. G. Kanatzidis, F. Meng, C. D. Malliakas, SPIE Optics + Photonics, San Diego, CA, USA, August 2016.
    30. M. Zhang, Z. Zheng, Q. Fu, Z. Chen, J. He, S. Zhang, C. Chen, W. Luo, Journal of Crystal Growth, 2018, 484, 37
    31. K. Wang, L. Jing, Q. Yao, J. Zhang, X. Cheng, Y. Yuan, C. Shang, J. Ding, T. Zhou, H. Sun, W. Zhang, H. Li, The Journal of Physical Chemistry Letters, 2021, 12, 1904
    32. J.-L. Pouchou, F. Pichoir, Electron Probe Quantitation, Springer, Germany, 1991.
    33. K. F. J. Heinrich, 11th Int. Congr. on X-Ray Optics and Microanalysis, London, Ontario, Canada, August 1986.
    34. K. L. Williams, An introduction to X-ray spectrometry: X-ray fluorescence and electron microprobe analysis, Allen & Unwin Boston, America, 1987.
    35. H. Zhang, F. Wang, Y. Lu, Q. Sun, Y. Xu, B.-B. Zhang, W. Jie, M. G. Kanatzidis, Journal of Materials Chemistry C, 2020, 8, 1248
    36. H. Kim, Y. Ogorodnik, A. Kargar, L. Cirignano, C. L. Thrall, W. Koehler, S. P. O'Neal, Z. He, E. Swanberg, S. A. Payne, M. R. Squillante, K. Shah, Frontiers in Physics, 2020, 8, 55
    37. A. Churilov, W. Higgins, G. Ciampi, H. Kim, L. Cirignano, F. Olschner, K. Shah, SPIE Optics+Photonics 2008, San Diego, CA, USA, August 2008.
    38. U. Makanda, A. Voinot, R. Kandel, Y. Wu, M. Leybourne, P. Wang, Journal of Analytical Atomic Spectrometry, 2020, 35, 2672
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(4)

Information

Article Metrics

Article views(2900) PDF downloads(1002) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint