Citation: | Zhiliang Li, Xiaofeng Yang, Qing Wang, Hongxia Zhang, Zhihai Ding, et al. Bi(2-x)SbxTe3 Thermoelectric Composites with High Average zT Values: From Materials to Devices. Materials Lab 2022, 1, 220026. doi: 10.54227/mlab.20220026 |
(Bi,Sb)Te-based materials have drawn extensive attention for nearly two centuries as one of the most successful commercial thermoelectric (TE) materials. However, Bi(2-x)SbxTe3 composites with remarkable average figure of merit (zTavg) values are highly desired in terms of the great contribution on expanding the applying temperature ranges of the commercial devices. Herein, Bi0.35Sb1.65Te3 compound with outstanding zTavg value of about 1.18 (integrate from 298 to 498 K) was obtained via delaying the bipolar effect by precipitating multi-scale Sb2Te3 inclusions. The power factor (PF) was enhanced from 2.1×10−3 Wm−1 K−2 (Bi0.5Sb1.5Te3) to 4.3×10−3 Wm−1 K−2 (Bi0.35Sb1.65Te3) by optimizing the carrier concentration from 1.9×1019 cm−3 to 3.9×1019 cm−3 via adjusting the proportions of Bi:Sb. Correspondingly, the lattice thermal conductivities ($ {\kappa }_{l} $) were distinctly suppressed by the additional multiple phonon scattering resulting from the Sb2Te3 precipitates. Consequently, a remarkable zTmax, as high as ~1.35 at 373 K was obtained in the Bi0.35Sb1.65Te3 sample. The temperature difference ($ \Delta $T, 6.0 A current) of the TE device that assembled with the commercial N-type Bi(Te,Se) ingot has reached up to 66.9 K. The high zTavg, zTmax and $ \Delta $T values will further promote the commercial applications of (Bi,Sb)Te-based materials in a wide temperature range.
1. | L. E. Bell, Science, 2008, 321, 1457 |
2. | A. F. Ioffe, L. S. Stil'bans, E. K. Iordanishvili, T. S. Stavitskaya and A. G. Vineyard, Phys. Today, 1959, 12, 42 |
3. | X. Lu, P. Jiang, X. Bao, Nat. Commun., 2019, 10, 1 |
4. | G. J. Snyder, E. S. Toberer, Nat. Mater., 2008, 7, 105 |
5. | Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Nature, 2011, 473, 66 |
6. | F. J. Disalvo, Science, 1999, 285, 703 |
7. | J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science, 2008, 321, 554 |
8. | B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science, 2008, 320, 634 |
9. | X. Zhang, D. Wang, H. Wu, M. Yin, Y. Pei, S. Gong, L. Huang, S. J. Pennycook, J. He, L.-D. Zhao, Energy Environ. Sci., 2017, 10, 2420 |
10. | Q. Zhang, Q. Zhang, S. Chen, W. Liu, K. Lukas, X. Yan, H. Wang, D. Wang, C. Opeil, G. Chen, Z. Feng, Nano Energy, 2012, 1, 183 |
11. | X. Chen, L. Liu, Y. Dong, L. Wang, L. Chen, W. Jiang, Prog. Nat. Sci-mater., 2012, 22, 201 |
12. | L. Hu, T. Zhu, X. Liu, X. Zhao, Adv. Funct. Mater., 2014, 24, 5211 |
13. | T. Zhu, Z. Xu, J. He, J. Shen, S. Zhu, L. Hu, T. M. Tritt, X. Zhao, J. Mater. Chem. A, 2013, 1, 11589 |
14. | J.-J. Shen, T.-J. Zhu, X.-B. Zhao, S.-N. Zhang, S.-H. Yang, Z.-Z. Yin, Energy Environ. Sci., 2010, 3, 1519 |
15. | L.-P. Hu, T.-J. Zhu, Y.-G. Wang, H.-H. Xie, Z.-J. Xu, X.-B. Zhao, Npg Asia Mater., 2014, 6, e88 |
16. | Z. J. Xu, L. P. Hu, P. J. Ying, X. B. Zhao, T. J. Zhu, Acta Mater., 2015, 84, 385 |
17. | J. Jiang, L.-D. Chen, S. Bai, Q. Yao, Q. Wang, Scripta Mater., 2005, 52, 347 |
18. | R. Deng, X. Su, Z. Zheng, L. Wei, Y. Yan, Q. Zhang, V. P. Dravid, C. Uher, M. G. Kanatzidis, X. Tang, Sci. Adv., 2018, 4, eaar5606 |
19. | Y. Pan, U. Aydemir, J. A. Grovogui, I. T. Witting, R. Hanus, Y. Xu, J. Wu, C.-F. Wu, F.-H. Sun, H.-L. Zhuang, J.-F. Dong, J.-F. Li, V. P. Dravid, G. J. Snyder, Adv. Mater., 2018, 30, 1802016 |
20. | Y. Pan, Y. Qiu, I. Witting, L. Zhang, C. Fu, J.-W. Li, Y. Huang, F.-H. Sun, J. He, G. J. Snyder, C. Felser, J.-F. Li, Energ. Environ. Sci, 2019, 12, 624 |
21. | H.-L. Zhuang, J. Pei, B. Cai, J. Dong, H. Hu, F.-H. Sun, Y. Pan, G. J. Snyder, J.-F. Li, Adv. Funct. Mater., 2021, 31, 2009681 |
22. | Y. Q. Cao, T. J. Zhu, X. B. Zhao, X. B. Zhang, J. P. Tu, Appl. Phys. A, 2008, 92, 321 |
23. | Y. Q. Cao, X. B. Zhao, T. J. Zhu, X. B. Zhang, J. P. Tu, Appl. Phys. Lett., 2008, 92, 143106 |
24. | S. Cao, Z.-Y. Huang, F.-Q. Zu, J. Xu, L. Yang, Z.-G. Chen, Acs Appl. Mater. Inter., 2017, 9, 36478 |
25. | Z.-Y. Huang, H. Zhang, L. Yang, B. Zhu, K. Zheng, M. Hong, Y. Yu, F.-Q. Zu, J. Zou, Z.-G. Chen, Mater. Today Energy, 2018, 9, 383 |
26. | Y. Zheng, H. Xie, Q. Zhang, A. Suwardi, X. Cheng, Y. Zhang, W. Shu, X. Wan, Z. Yang, Z. Liu, X. Tang, Acs Appl. Mater. Inter., 2020, 12, 36186 |
27. | W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J. R. D. Copley, C. M. Brown, Q. Zhang, T. M. Tritt, Nano Lett., 2010, 10, 3283 |
28. | J. Qiu, Y. Yan, H. Xie, T. Luo, F. Xia, L. Yao, M. Zhang, T. Zhu, G. Tan, X. Su, J. Wu, C. Uher, H. Jiang, X. Tang, Sci. China Mater., 2021, 64, 1507 |
29. | G. Zheng, X. Su, H. Xie, Y. Shu, T. Liang, X. She, W. Liu, Y. Yan, Q. Zhang, C. Uher, M. G. Kanatzidis, X. Tang, Energy Environ. Sci., 2017, 10, 2638 |
30. | H. Huang, J. Li, S. Chen, Z. Zhang, Y. Yan, X. Su, X. Tang, J. Solid State Chem., 2020, 288, 121433 |
31. | J.-Z. Xin, C.-G. Fu, W.-J. Shi, G.-W. Li, G. Auffermann, Y.-P. Qi, T.-J. Zhu, X.-B. Zhao, C. Felser, Rare Metals, 2018, 37, 274 |
32. | Q. Zhang, R. Zhai, T. Fang, K. Xia, Y. Wu, F. Liu, X. Zhao, T. Zhu, J. Alloys Compd., 2020, 831, 154732 |
33. | F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing, H.-S. Chu, Q. Zhang, P. Lu, T. Zhang, D. Ren, J. Chen, X. Shi, L. Chen, Energy Environ. Sci., 2016, 9, 3120 |
34. | M. Tan, W.-D. Liu, X.-L. Shi, J. Shang, H. Li, X. B. Liu, L. Z. Kou, M. Dargusch, Y. Deng, Z.-G. Chen, Nano Energy, 2020, 78, 105379 |
35. | Y. Wang, M. Hong, W.-D. Liu, X.-L. Shi, S.-D. Xu, Q. Sun, H. Gao, S. Y. Lu, J. Zou, Z.-G. Chen, Chem. Eng. J., 2020, 397, 125360 |
36. | M. Tan, X.-L. Shi, W.-D. Liu, M. Li, Y. L. Wang, H. Li, Y. Deng, Z.-G. Chen, Adv. Energy Mater., 2021, 11, 2102578 |
37. | Y. Zhang, G. Xu, J. Mi, F. Han, Z. Wang, C. Ge, Mater. Res. Bull., 2011, 46, 760 |
38. | X. Fan, X. Cai, X. Han, C. Zhang, Z. Rong, F. Yang, G. Li, J. Solid State Chem., 2016, 233, 186 |
39. | M. Scheele, N. Oeschler, I. Veremchuk, K.-G. Reinsberg, A.-M. Kreuziger, A. Kornowski, J. Broekaert, C. Klinke, H. Weller, Acs Nano, 2010, 4, 4283 |
40. | C. Zhang, Z. Peng, Z. Li, L. Yu, K. A. Khor, Q. Xiong, Nano Energy, 2015, 15, 688 |
41. | M. Hong, Z. Chen, L. Yang, J. Zou, Nano Enerey, 2016, 20, 144 |
42. | T. Fang, X. Li, C. Hu, Q. Zhang, J. Yang, W. Zhang, X. Zhao, D. J. Singh, T. Zhu, Adv. Funct. Mater., 2019, 29, 1900677 |
43. | H.-J. Zhou, G.-W. Yang, Y.-Y. Zhang, Z.-K. Xu, G.-P. Wu, Acs Nano, 2018, 12, 11471 |
44. | A. Kanatzi, C. Papageorgiou, C. Lioutas, T. Kyratsi, J. Electron. Mater., 2013, 42, 1652 |
45. | B. Cai, H.-L. Zhuang, Q. Cao, H. Hu, J. Dong, Asfandiyar, J.-F. Li, Acs Appl. Mater. Inter., 2020, 12, 16426 |
46. | C. Li, S. Ma, P. Wei, W. Zhu, X. Nie, X. Sang, Z. Sun, Q. Zhang, W. Zhao, Energy Environ. Sci., 2020, 13, 535 |
47. | B. Gary, B. Phil, L. Jay, B. Nicholas, M. Michael, B.-C. Avram, Y. Bao, Nat. Commun., 2016, 7, 10302 |
48. | G. E. Bulman, E. Siivola, B. Shen, R. Venkatasubramanian, Appl. Phys. Lett., 2006, 89, 122117 |
49. | D. Singh, A. T. Kutbee, M. T. Ghoneim, A. M. Hussain, M. M. Hussain, Adv. Mater. Technologies., 2018, 3, 1700192 |
50. | Z. Bian, A. Shakouri, Appl. Phys. Lett., 2006, 89, 212101 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
(a, b) XRD patterns, and partly enlarged figure, (c) lattice constants of Bi(2-x)SbxTe3 composites with x were varied from 1.50 to 1.85. (d) Simulated structures of Bi0.5Sb1.5Te3, Bi0.35Sb1.65Te3, and Bi0.15Sb1.85Te3 samples.
(a) Layer structures and grain sizes of the Bi0.35Sb1.65Te3 sample. (b−d) EDS mapping of Bi, Sb and Te elements on the fracture surface of Bi0.35Sb1.65Te3 sample.
(a, b) HAADF-STEM images of Bi0.35Sb1.65Te3 sample. (c−e) EDX mapping patterns of Bi, Sb, and Te elements around the precipitate in a Bi0.35Sb1.65Te3 crystal. (f) TEM image of Bi0.35Sb1.65Te3-based compound. (g, h) HRTEM images of Sb2Te3 precipitate (Zone 1 in (f)) and Bi0.35Sb1.65Te3 matrix (Zone 2 in (f)), respectively. (i, j) FFT and lattice dislocation images of Bi0.35Sb1.65Te3 matrix. (k) Morphology and size distribution of Bi0.35Sb1.65Te3 nanoparticles.
(a) Electrical conductivities, (b) Hall carrier concentrations, (c) Hall carrier mobilities, (d) Seebeck coefficients, (e) Pisarenko plots and effective mass, (f) power factors of the Bi(2-x)SbxTe3 samples.
(a−d) Temperature-dependent
(a) Temperature-dependent zT values of the Bi(2-x)SbxTe3 samples with different element ratios. (b) A comparison of zTmax and zTavg values between our sample and the state-of-the-art P-type Bi(2-x)SbxTe3-based materials.
(a) Simulated construction of the thermoelectric device. (b) The maximum