Feng Jiang, Tao Feng, Yongbin Zhu, Chengliang Xia, Chengyan Liu, et al. Structure, Magnetic and Thermoelectric Properties of High Entropy Selenides Bi0.6Sb0.6In0.4Cr0.4Se3. Materials Lab 2022, 1, 220045. doi: 10.54227/mlab.20220045
Citation: Feng Jiang, Tao Feng, Yongbin Zhu, Chengliang Xia, Chengyan Liu, et al. Structure, Magnetic and Thermoelectric Properties of High Entropy Selenides Bi0.6Sb0.6In0.4Cr0.4Se3. Materials Lab 2022, 1, 220045. doi: 10.54227/mlab.20220045

Research Article

Structure, Magnetic and Thermoelectric Properties of High Entropy Selenides Bi0.6Sb0.6In0.4Cr0.4Se3

More Information
  • Corresponding authors: yuechen@hku.hk; liuws@sustech.edu.cn
  • Introducing magnetic elements or nanoparticles into the thermoelectric matrix is of great importance to regulate the thermoelectric performance and evaluate the magnetic-thermoelectric effect. While, the limitation of solid solution ability of magnetic elements in thermoelectric materials impedes the development of magnetic thermoelectric matrix. Herein, we have applied high entropy strategy to alloy a large amount of Cr elements into the Bi2Se3 sub-lattice, and successfully obtained a single-phase magnetic thermoelectric material in the nominal composition of Bi0.6Sb0.6In0.4Cr0.4Se3. The Magnetization loop curves of Bi0.6Sb0.6In0.4Cr0.4Se3 sample shows obvious ferromagnetic behavior with a coercivity of 2000 Oe and residual magnetization of 0.22 emu g−1 at 2 K. The temperature dependence of zero-field-cooled magnetic susceptibility and field-cooled magnetic susceptibility reveals a transition from ferromagnetism to paramagnetism at 61 K. These findings indicate that a magnetic Bi2Se3 based thermoelectric material is successfully obtained. The corresponding structure, magnetic and thermoelectric properties are also carefully discussed. This work offers a new avenue to achieve a magnetic thermoelectric material through high entropy strategy.


  • 加载中
  • 1. R. P. Chasmar and R. Stratton, J. Electro. Control, 1959, 7, 52
    2. J. He and T. M. Tritt, Science, 2017, 357, eaak9997
    3. W. S. Liu, X. Qian, C.-G. Han, Q. K. Li and G. Chen, Appl. Phys. Lett., 2021, 118, 020501
    4. Y. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. D. Chen and G. J. Snyder, Nature, 2011, 473, 66
    5. H. L. Yu, A. R. Shaikh, F. Xiong and Y. Chen, ACS Appl. Mater. Interfaces, 2018, 10, 9889
    6. H. Usui and K. Kuroki, J. Appl. Phys., 2017, 121, 165101
    7. B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dressel, G. Chen and Z. F. Ren, Science, 2008, 320, 634
    8. W. S. Liu, X. Yan, G. Chen and Z. F Ren, Nano Energy, 2012, 1, 42
    9. T. J. Zhu, L. P. Hu, X. B. Zhao and J. He, Adv. Sci., 2016, 3, 1600004
    10. J. Li, S. Zhang, F. Jia, S. Q. Zheng, X. L. Shi, D. Q. Jiang, S. Y. Wang, G. W. Lu, L. M. Wu and Z.-G. Chen, Mater. Today Phys., 2020, 15, 100269
    11. T. Zhao, K. Zhao, Q. Y. Liu, X. S. Yang and Y. Zhao, J. Appl. Phys., 2020, 127, 155101
    12. P. J. Sun, K. R. Kumar, M. Lyu, Z. Wang, J. S Xiang and W. Q. Zhang, The Innovation, 2021, 2, 100101
    13. S. Hébert, R. Daou, A. Maignan, S. Das, A. Banerjee, Y. Klein, C. Bourges, N. Tsujii and T. Mori, Sci. Tech. Adv. Mater., 2021, 22, 583
    14. J. K. Furdyna, J. Appl. Phys., 1988, 64, R29
    15. T. Feng, P. S. Wang, Z. J. Han, L. Zhou, W. Q. Zhang, Q. H. Liu and W. S. Liu, Adv. Mater., 2022, 34, 2200931
    16. A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen and F. Steglich, EPL, 2007, 80, 17008
    17. Y. Zheng, T. Lu, M. M. H. Polash, M. Rasoulianboroujeni, N. Liu, M. E. Manley, Y. Deng, P. J. Sun, X. L. Chen, R. P. Hermann, D. Vashaee, J. P. Heremans and H. Zhao, Sci. Adv., 2019, 5, 9461
    18. J. Z. Wu, F. C. Liu, C. Liu, Y. Wang, C. C. Li, Y. F. Lu, S. Matsuishi and H. Hosono, Adv. Mater., 2020, 32, 2001815
    19. T. Okuda, N. Jufuku, S. Hidaka and N. Terada, Phys. Rev. B, 2005, 72, 144403
    20. Z. C. Wei, C. Y. Wang, J. Y. Zhang, J. Yang, Z. L. Li, Q. D. Zhang, P. F. Luo, W. Q. Zhang, E. K. Liu and J. Luo, ACS Appl. Mater. Interfaces, 2020, 12, 20653
    21. F. Ahmed, N. Tsujii and T. Mori, J. Mater. Chem. A, 2017, 5, 7545
    22. W. Y. Zhao, Z. Y. Liu, P. Wei, Q. J. Zhang, W. T. Zhu, X. L. Su, X. F. Tang, J. H. Yang, Y. Liu, J. Shi, Y. M. Chao, S. Q. Lin and Y. Z. Pei, Nat. Nanotechnology, 2017, 12, 55
    23. W. Y. Zhao, Z. Y. Liu, Z. G. Sun, Q. J. Zhang, P. Wei, X. Mu, H. Y. Zhou, C. C. Li, S. F. Ma, D. Q. He, P. X. Ji, W. T. Zhu, X. L. Nie, X. L. Su, X. F. Tang, B. G. Shen, X. L. Dong, J. H. Yang, Y. Liu and J. Shi, Nature, 2017, 549, 247
    24. N. Jia, J. Cao, X. Y. Tan, J. F. Dong, H. F. Liu, C. K. I. Tan, J. W. Xu, Q. Y. Yan, X. J. Loh and A. Suwardi, Mater. Today Phys., 2021, 21, 100519
    25. H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii and T. Mori, Mater. Today Phys., 2017, 3, 85
    26. D. Chen, F. Jiang, L. Fang, Y.-B. Zhu, C.-C. Ye and W.-S. Liu, Rare Met., 2022, 41, 1543
    27. F. Jiang, C. L. Xia, Y. B. Zhu, Z. J. Han, C. Y. Liu, J. T. Xia, Y. Chen and W. S. Liu, Appl. Phys. Lett., 2021, 118, 193903
    28. T. P. Bailer, R. Lu, P. F. P. Poudeu and C. Uher, Mater. Today Phys., 2019, 11, 100155
    29. F.-H. Sun, S. F. Ma, W. Y. Zhao, C. C. Li, X. H. Sang, P. Wei and Q. J. Zhang, Rep. Prog. Phys, 2021, 84, 096501
    30. T. Feng, L. Q. Li, Q. Shi, Y. L. Zhang and G. S. Li, J. Chem. Thermodyn., 2020, 145, 106040
    31. T. Feng, L. Q. Li, Q. Shi, X. L. Che, X. L. Xu and G. S. Li, J. Chem. Thermodyn., 2018, 119, 127
    32. D. A. McQuarrie, Statistical Mechanics, University Science Books, USA, 2000.
    33. Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai and Y. Iye, Phys, Rev. Lett., 1993, 70, 2126
    34. D. Pines and P. Nozieres, The Theory of Quantum Liquids, W. A. Benjamin, USA, 1966.
    35. R. Fortulan, S. A. Yamini, C. Nwanebu, S. W. Li, T. Baba, M. J. Reece and T. Mori, ACS Appl. Energy Mater., 2022, 5, 3845
    36. T. Teramoto, T. Komine, M. Kuraishi and R. Sugita, J. Appl. Phys, 2008, 103, 043717
    37. M. S. Akhanda, S. E. Rezaei, K. Esfarjani S. Krylyuk, A. V. Davydov, and M. Zebarjadi, Phys. Rev. Mater., 2021, 5, 015403
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Information

Article Metrics

Article views(3000) PDF downloads(1157) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint