Citation: | Feng Jiang, Tao Feng, Yongbin Zhu, Chengliang Xia, Chengyan Liu, et al. Structure, Magnetic and Thermoelectric Properties of High Entropy Selenides Bi0.6Sb0.6In0.4Cr0.4Se3. Materials Lab 2022, 1, 220045. doi: 10.54227/mlab.20220045 |
Introducing magnetic elements or nanoparticles into the thermoelectric matrix is of great importance to regulate the thermoelectric performance and evaluate the magnetic-thermoelectric effect. While, the limitation of solid solution ability of magnetic elements in thermoelectric materials impedes the development of magnetic thermoelectric matrix. Herein, we have applied high entropy strategy to alloy a large amount of Cr elements into the Bi2Se3 sub-lattice, and successfully obtained a single-phase magnetic thermoelectric material in the nominal composition of Bi0.6Sb0.6In0.4Cr0.4Se3. The Magnetization loop curves of Bi0.6Sb0.6In0.4Cr0.4Se3 sample shows obvious ferromagnetic behavior with a coercivity of 2000 Oe and residual magnetization of 0.22 emu g−1 at 2 K. The temperature dependence of zero-field-cooled magnetic susceptibility and field-cooled magnetic susceptibility reveals a transition from ferromagnetism to paramagnetism at 61 K. These findings indicate that a magnetic Bi2Se3 based thermoelectric material is successfully obtained. The corresponding structure, magnetic and thermoelectric properties are also carefully discussed. This work offers a new avenue to achieve a magnetic thermoelectric material through high entropy strategy.
1. | R. P. Chasmar and R. Stratton, J. Electro. Control, 1959, 7, 52 |
2. | J. He and T. M. Tritt, Science, 2017, 357, eaak9997 |
3. | W. S. Liu, X. Qian, C.-G. Han, Q. K. Li and G. Chen, Appl. Phys. Lett., 2021, 118, 020501 |
4. | Y. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. D. Chen and G. J. Snyder, Nature, 2011, 473, 66 |
5. | H. L. Yu, A. R. Shaikh, F. Xiong and Y. Chen, ACS Appl. Mater. Interfaces, 2018, 10, 9889 |
6. | H. Usui and K. Kuroki, J. Appl. Phys., 2017, 121, 165101 |
7. | B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dressel, G. Chen and Z. F. Ren, Science, 2008, 320, 634 |
8. | W. S. Liu, X. Yan, G. Chen and Z. F Ren, Nano Energy, 2012, 1, 42 |
9. | T. J. Zhu, L. P. Hu, X. B. Zhao and J. He, Adv. Sci., 2016, 3, 1600004 |
10. | J. Li, S. Zhang, F. Jia, S. Q. Zheng, X. L. Shi, D. Q. Jiang, S. Y. Wang, G. W. Lu, L. M. Wu and Z.-G. Chen, Mater. Today Phys., 2020, 15, 100269 |
11. | T. Zhao, K. Zhao, Q. Y. Liu, X. S. Yang and Y. Zhao, J. Appl. Phys., 2020, 127, 155101 |
12. | P. J. Sun, K. R. Kumar, M. Lyu, Z. Wang, J. S Xiang and W. Q. Zhang, The Innovation, 2021, 2, 100101 |
13. | S. Hébert, R. Daou, A. Maignan, S. Das, A. Banerjee, Y. Klein, C. Bourges, N. Tsujii and T. Mori, Sci. Tech. Adv. Mater., 2021, 22, 583 |
14. | J. K. Furdyna, J. Appl. Phys., 1988, 64, R29 |
15. | T. Feng, P. S. Wang, Z. J. Han, L. Zhou, W. Q. Zhang, Q. H. Liu and W. S. Liu, Adv. Mater., 2022, 34, 2200931 |
16. | A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen and F. Steglich, EPL, 2007, 80, 17008 |
17. | Y. Zheng, T. Lu, M. M. H. Polash, M. Rasoulianboroujeni, N. Liu, M. E. Manley, Y. Deng, P. J. Sun, X. L. Chen, R. P. Hermann, D. Vashaee, J. P. Heremans and H. Zhao, Sci. Adv., 2019, 5, 9461 |
18. | J. Z. Wu, F. C. Liu, C. Liu, Y. Wang, C. C. Li, Y. F. Lu, S. Matsuishi and H. Hosono, Adv. Mater., 2020, 32, 2001815 |
19. | T. Okuda, N. Jufuku, S. Hidaka and N. Terada, Phys. Rev. B, 2005, 72, 144403 |
20. | Z. C. Wei, C. Y. Wang, J. Y. Zhang, J. Yang, Z. L. Li, Q. D. Zhang, P. F. Luo, W. Q. Zhang, E. K. Liu and J. Luo, ACS Appl. Mater. Interfaces, 2020, 12, 20653 |
21. | F. Ahmed, N. Tsujii and T. Mori, J. Mater. Chem. A, 2017, 5, 7545 |
22. | W. Y. Zhao, Z. Y. Liu, P. Wei, Q. J. Zhang, W. T. Zhu, X. L. Su, X. F. Tang, J. H. Yang, Y. Liu, J. Shi, Y. M. Chao, S. Q. Lin and Y. Z. Pei, Nat. Nanotechnology, 2017, 12, 55 |
23. | W. Y. Zhao, Z. Y. Liu, Z. G. Sun, Q. J. Zhang, P. Wei, X. Mu, H. Y. Zhou, C. C. Li, S. F. Ma, D. Q. He, P. X. Ji, W. T. Zhu, X. L. Nie, X. L. Su, X. F. Tang, B. G. Shen, X. L. Dong, J. H. Yang, Y. Liu and J. Shi, Nature, 2017, 549, 247 |
24. | N. Jia, J. Cao, X. Y. Tan, J. F. Dong, H. F. Liu, C. K. I. Tan, J. W. Xu, Q. Y. Yan, X. J. Loh and A. Suwardi, Mater. Today Phys., 2021, 21, 100519 |
25. | H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii and T. Mori, Mater. Today Phys., 2017, 3, 85 |
26. | D. Chen, F. Jiang, L. Fang, Y.-B. Zhu, C.-C. Ye and W.-S. Liu, Rare Met., 2022, 41, 1543 |
27. | F. Jiang, C. L. Xia, Y. B. Zhu, Z. J. Han, C. Y. Liu, J. T. Xia, Y. Chen and W. S. Liu, Appl. Phys. Lett., 2021, 118, 193903 |
28. | T. P. Bailer, R. Lu, P. F. P. Poudeu and C. Uher, Mater. Today Phys., 2019, 11, 100155 |
29. | F.-H. Sun, S. F. Ma, W. Y. Zhao, C. C. Li, X. H. Sang, P. Wei and Q. J. Zhang, Rep. Prog. Phys, 2021, 84, 096501 |
30. | T. Feng, L. Q. Li, Q. Shi, Y. L. Zhang and G. S. Li, J. Chem. Thermodyn., 2020, 145, 106040 |
31. | T. Feng, L. Q. Li, Q. Shi, X. L. Che, X. L. Xu and G. S. Li, J. Chem. Thermodyn., 2018, 119, 127 |
32. | D. A. McQuarrie, Statistical Mechanics, University Science Books, USA, 2000. |
33. | Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai and Y. Iye, Phys, Rev. Lett., 1993, 70, 2126 |
34. | D. Pines and P. Nozieres, The Theory of Quantum Liquids, W. A. Benjamin, USA, 1966. |
35. | R. Fortulan, S. A. Yamini, C. Nwanebu, S. W. Li, T. Baba, M. J. Reece and T. Mori, ACS Appl. Energy Mater., 2022, 5, 3845 |
36. | T. Teramoto, T. Komine, M. Kuraishi and R. Sugita, J. Appl. Phys, 2008, 103, 043717 |
37. | M. S. Akhanda, S. E. Rezaei, K. Esfarjani S. Krylyuk, A. V. Davydov, and M. Zebarjadi, Phys. Rev. Mater., 2021, 5, 015403 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
(a) Crystal structure of the as-fabricated Bi0.6Sb0.6In0.4Cr0.4Se3 high entropy selenides. Cyan for Se1, Brown for Se2, Mixed color for randomly distributed Bi, Sb, In, and Cr. (b) XRD patterns of pristine Bi0.8Sb0.8Cr0.4Se3 and Bi0.6Sb0.6In0.4Cr0.4Se3. The insert symbol represented the secondary phase BiCrSe3 (PDF#51-0750) in Bi0.8Sb0.8Cr0.4Se3 material.
M-H curves of (a) Bi2Se3, (b) BiSbSe3, (c) Bi0.8Sb0.8In0.4Se3, and (d) Bi0.6Sb0.6In0.4Cr0.4Se3 at 2 K.
(a) Zero-Field cooling and Field cooling curves of pristine Bi0.6Sb0.6In0.4Cr0.4Se3 with a magnetization of
Heat capacity of (a) Bi0.8Sb0.8In0.4Se3 and (b) Bi0.6Sb0.6In0.4Cr0.4Se3 as a function of temperature over the range of 3 to 11 K. The dots stand for the experimental data, and the red line represents the fitted result.
Temperature dependent thermoelectric properties of Bi0.8Sb0.8In0.4Se3 and Bi0.6Sb0.6In0.4Cr0.4Se3 samples: (a) electrical conductivity, (b) Seebeck coefficient, (c) thermal conductivity, and (d) ZT.
The Magneto-Seebeck coefficient of Bi0.6Sb0.6In0.4Cr0.4Se3 at 0, 3, and 9 Tesla in a temperature range of 2 K - 250 K.