Citation: | Junqi Liu, Fusheng Song, Zong-Yang Shen, Xuhai Shi, Zhipeng Li, Wenqin Luo, Zhumei Wang, Yueming Li. (Mg1/3Ta2/3)4+ complex ion modified BNBST relaxor ferroelectric ceramics for energy storage applications[J]. Materials Lab, 2023, 2(2): 220057. doi: 10.54227/mlab.20220057 |
(Bi0.5Na0.5)0.65(Ba0.3Sr0.7)0.35[Ti1-x(Mg1/3Ta2/3)x]O3 (BNBST-xMT, x=0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06) ceramics were prepared by a solid state reaction method. The effect of (Mg1/3Ta2/3)4+ complex ion doping content on the phase structure, microstructure, dielectric and energy storage properties of the ceramics was systematically investigated. It was found that the introduction of MT complex ion into the B-site of BNBST can effectively reduce the remnant polarization, thus ensuring the improvement of the energy storage properties. For BNBST-0.04MT ceramic, the optimized high energy density (Wrec=1.69 J cm−3) and efficiency (η=80%) were achieved only at a low electric field of 125 kV cm−1. In addition, this ceramic sample exhibited good temperature, frequency and fatigue cycle stabilities, which was promising candidate for pulsed power capacitors.
1. | D. Li, X. Zeng, Z. Li, Z-Y. Shen, H. Hao, W. Luo, X. Wang, F. Song, Z. Wang, Y. Li, J. Adv. Ceram., 2021, 10, 675 |
2. | P. Zhao, Z. Cai, L. Wu, C. Zhu, L. Li, X. Wang, J. Adv. Ceram., 2021, 10, 1153 |
3. | H. G. Wisken, T. H. G. G. Weise, IEEE. T. Magn., 2003, 39, 446 |
4. | A. A. Balaraman, S. Dutta, J. Phys. D: Appl. Phys., 2022, 55, 183002 |
5. | W. Jia, Y. Hou, M. Zheng, Y. Xu, M. Zhu, K. Yang, H. Cheng, S. Sun, J. Xing, IET Nanodielectrics, 2018, 1, 3 |
6. | Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M. T. Lanagan, H. liu, Adv. Mater., 2017, 29, 1601727 |
7. | L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Prog. Mater. Sci., 2019, 102, 72 |
8. | G. Wang, Z. Lu, Y. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, I. M. Reaney, Chem. Rev., 2021, 121, 6124 |
9. | H. Palneedi, M. Peddigari, G.-T. Hwang, D.-Y. Jeong, J. Ryu, Adv. Funct. Mater., 2018, 28, 1803665 |
10. | Z. Li, D.-X. Li, Z.-Y. Shen, X. Zeng, F. Song, W. Luo, X. Wang, Z. Wang, Y. Li, J. Adv. Ceram., 2022, 11, 283 |
11. | H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan, Y. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S. Zhang, L.-Q. Chen, Y.-H. Lin, C.-W. Nan, Science, 2019, 365, 578 |
12. | J. Yan, Y. Wang, C.-M. Wang, J. Ouyang, J. Adv. Ceram., 2021, 10, 627 |
13. | K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He, Mater. Res. Bull., 2019, 113, 190 |
14. | D. Li, Z.-Y. Shen, Z. Li, W. Luo, F. Song, X. Wang, Z. Wang, Y. Li, J. Mater. Chem. C., 2020, 8, 7650 |
15. | D. Li, Z.-Y. Shen, Z. Li, X. Wang, W.-Q. Luo, F. Song, Z. Wang, Y. Li, J. Mater. Sci.: Mater. El., 2020, 31, 3648 |
16. | X. Zhu, Y. Gao, P. Shi, R. Kang, F. Kang, W. Qiao, J. Zhao, Z. Wang, Y. Yuan, X. Lou, Nano Energy, 2022, 98, 107276 |
17. | L. Zhang, Y. Pu, M. Chen, T. Wei, X. Peng, Chem. Eng. J., 2020, 383, 123154 |
18. | J. Shi, X. Liu, F. Zhu, W. Tian, Y. Xia, T. Li, R. Rao, T. Zhang, L. Liu, J. Materiomics, 2022, 8, 719 |
19. | L. Zhang, R. Jing, Y. Huang, Q. Hu, D. O. Alikin, V. Y. Shur, J. Gao, X. Wei, L. Zhang, G. Liu, Y. Yan, L. Jin, J. Materiomics, 2022, 8, 527 |
20. | W. Cao, W. Li, Y. Feng, T. Bai, Y. Qiao, Y. Hou, T. Zhang, Y. Yu, W. Fei, Appl. Phys. Lett., 2016, 108, 202902 |
21. | Y. Guo, H. Fan, J. Shi, J. Mater. Sci., 2014, 50, 403 |
22. | D. Hu, Z. Pan, L. Wu, F. Yang, L. Tang, J. Zhao, Y. Shen, Y. Chen, P. Li, J. Zhai, J. Liu, J. Materiomics, 2021, 7, 869 |
23. | Y. Huang, F. Li, H. Hao, F. Xia, H. Liu, S. Zhang, J. Materiomics, 2019, 5, 385 |
24. | H. Ji, D. Wang, W. Bao, Z. Lu, G. Wang, H. Yang, A. Mostaed, L. Li, A. Feteira, S. Sun, F. Xu, D. Li, C.-J. Ma, S.-Y. Liu, I. M. Reaney, Energy Storage Mater., 2021, 38, 113 |
25. | M. Wang, Q. Feng, C. Luo, Y. Lan, C. Yuan, N. Luo, C. Zhou, T. Fujita, J. Xu, G. Chen, Y. Wei, ACS Appl. Mater. Inter., 2021, 13, 51218 |
26. | D. Li, Z.-Y. Shen, Z. Li, W. Luo, X. Wang, Z. Wang, F. Song, Y. Li, J. Adv. Ceram., 2020, 9, 183 |
27. | R. D. Shannon, Acta Cryst., 1976, 32, 751 |
28. | V. Westphal, W. Kleemann, Phys. Rev. Lett., 1992, 68, 847 |
29. | X. Yao, Z. Chen, L. E. Cross, J. Appl. Phys., 1983, 54, 3399 |
30. | G. Burns, F. H. Dacol, Solid State Commun., 1983, 48, 853 |
31. | C. Ma, H. Guo, S. P. Beckman, X. Tan, Phys. Rev. Lett., 2012, 109, 107602 |
32. | C. Zhou, Q. Li, J. Xu, L. Yang, W. Zeng, C. Yuan, G. Chen, J. Am. Ceram. Soc., 2018, 101, 1554 |
33. | J. Chen, Y. Wang, Y. Zhang, Y. Yang, R. Jin, J. Eur. Ceram. Soc., 2017, 37, 2365 |
34. | G. Liu, J. Dong, L. Zhang, Y. Yan, R. Jing, L. Jin, J. Materiomics, 2020, 6, 677 |
35. | J. Shi, X. Chen, X. Li, J. Sun, C. Sun, F. Pang, H. Zhou, J. Mater. Chem. C, 2020, 8, 3784 |
36. | H. Chen, J. Shi, X. Chen, C. Sun, F. Pang, X. Dong, H. Zhang, H. Zhou, J. Mater. Chem. A, 2021, 9, 4789 |
37. | Z. Jiang, H. Yang, L. Cao, Z. Yang, Y. Yuan, E. Li, Chem. Eng. J., 2021, 414, 128921 |
38. | X. He, F. Han, M. Liu, Z. Yuan, X. Jiang, C. Hu, S. Ren, X. Lei, L. Liu, J. Electron. Mater., 2020, 49, 6643 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
XRD patterns of BNBST-xMT ceramics: a 2θ=20~80°, and b 2θ=45.5~47°.
SEM images of polished and thermally-etched surface of BNBST-xMT ceramics: a x=0.01, b x=0.02, c x=0.03, d x=0.04, e x=0.05, f x=0.06.
Temperature dependent dielectric constant and loss of BNBST-xMT ceramics.
Temperature dependent dielectric constant and loss of BNBST-xMT ceramics at different measuring frequencies: a x=0.01, b x=0.02, c x=0.03, d x=0.04, e x=0.05, f x=0.06.
a P-E loops and b the corresponding Pmax, Pr, and Pmax-Pr of BNBST-xMT ceramics at 80 kV cm-1. c Energy density and d Energy efficiency of BNBST-xMT ceramics as a function of electric fields.
Room temperature P-I-E loops at 60 kV cm-1 and 10 Hz of: a BNBST ceramics and b BNBST-0.04MT ceramics.
P-E loops and the corresponding energy density and efficiency of BNBST-0.04MT ceramic at 60 kV/cm for different testing conditions: a,b 1 Hz~100 Hz, c,d 20~160 °C and e,f 1~104 times cycling.
a P-E loops of BNBST-0.04MT ceramic at 125 kV cm−1 and 10 Hz. b Leakage current of BNBST-0.04MT ceramic under different electric fields.