Citation: | Qing Wang, Shufang Wang, Zhiliang Li. Low-dimensionalization enhancing the thermoelectric performance of higher manganese silicide[J]. Materials Lab, 2023, 2(2): 230013. doi: 10.54227/mlab.20230013 |
Higher manganese silicide (HMS) is a candidate thermoelectric (TE) material at medium temperature due to its non-toxicity, abundance, and competitive price. The focus on improving the TE performance of HMS is to decrease the thermal conductivity. Low-dimensionalization techniques, such as nanocrystallization, embedding quantum dots (QDs) and thin film formation are effective strategies to decrease the lattice thermal conductivity by enhancing the phonon scattering on interfaces. Additionally, the Seebeck coefficients also can be improved due to the energy filtering effect via the interface barrier, and correspondingly increasing the power factor of HMS. The TE performance of HMS can be enhanced due to synergistically optimized electrical and thermal properties.
1. | M. Li, M. Hong, M. Dargusch, J. Zou, Z.-G. Chen, Trends Chem., 2021, 3, 561 |
2. | W. P. Q. Ng, H. L. Lam, P. S. Varbanov, J. J. Klemeš, Energy Convers. Manag., 2014, 85, 866 |
3. | K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science, 2004, 303, 818 |
4. | G. J. Snyder, E. S. Toberer, Nat. Mater., 2008, 7, 105 |
5. | L. E. Bell, Science, 2008, 321, 1457 |
6. | J. He, T. M. Tritt, Science, 2017, 357, eaak9997 |
7. | J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science, 2008, 321, 554 |
8. | L. Su, D. Wang, S. Wang, B. Qin, Y. Wang, Y. Qin, Y. Jin, C. Chang, L.-D. Zhao, Science, 2022, 375, 1385 |
9. | A. Zevalkink, D. M. Smiadak, J. L. Blackburn, A. J. Ferguson, M. L. Chabinyc, O. Delaire, J. Wang, K. Kovnir, J. Martin, L. T. Schelhas, T. D. Sparks, S. D. Kang, M. T. Dylla, G. J. Snyder, B. R. Ortiz, E. S. Toberer, Appl. Phys. Rev., 2018, 5, 021303 |
10. | L. D. Ivanova, Inorg. Mater., 2011, 47, 965 |
11. | L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature, 2014, 508, 373 |
12. | A. A. Olvera, N. A. Moroz, P. Sahoo, P. Ren, T. P. Bailey, A. A. Page, C. Uher, P. F. P. Poudeu, Energy Environ. Sci., 2017, 10, 1668 |
13. | D.-K. Shin, S.-W. You, I.-H. Kim, J. Korean Phys. Soc., 2014, 64, 1412 |
14. | M. Saleemi, A. Famengo, S. Fiameni, S. Boldrini, S. Battiston, M. Johnsson, M. Muhammed, M. S. Toprak, J. Alloys Compd., 2015, 619, 31 |
15. | P. Norouzzadeh, Z. Zamanipour, J. S. Krasinski, D. Vashaee, J. Appl. Phys., 2012, 112, 124308 |
16. | D. Y. N. Truong, H. Kleinke, F. Gascoin, Intermetallics, 2015, 66, 127 |
17. | W.-D. Liu, Z.-G. Chen, J. Zou, Adv. Energy Mater., 2018, 8, 1800056 |
18. | Q. Wang, S. Song, X. Yang, Z. Liu, Y. Ma, X. San, J. Wang, D. Zhang, S. Wang, Z. Li, J. Materiomics, 2021, 7, 377 |
19. | Z. Li, J.-F. Dong, F.-H. Sun, S. Hirono, J.-F. Li, Chem. Mater., 2017, 29, 7378 |
20. | Z. Li, J.-F. Dong, F.-H. Sun, Asfandiyar, Y. Pan, S.-F. Wang, Q. Wang, D. Zhang, L. Zhao, J.-F. Li, Adv. Sci., 2018, 5, 1800626 |
21. | Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, L. Chen, Adv. Funct. Mater., 2015, 25, 966 |
22. | Q. Wang, Z. Li, X. Yang, X. Qian, L. Guo, J. Wang, D. Zhang, S.-F. Wang, J. Mater. Sci. Technol., 2022, 111, 279 |
23. | X. Chen, Z. Zhou, Y. Lin, C. Nan, J. Materiomics, 2020, 6, 494 |
24. | Y. Okamoto, J. Saeki, T. Ohtsuki, H. Takiguchi, Appl. Phys. Express, 2008, 1, 117001 |
25. | H.-C. Chien, C.-R. Yang, L.-L. Liao, C.-K. Liu, M.-J. Dai, R.-M. Tain, D.-J. Yao, Appl. Therm. Eng., 2013, 51, 75 |
26. | H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y, Nakanishi, Y, Ikuhara, M, Hirano, H. Hosono, K. Koumoto, Nat. Mater., 2007, 6, 129 |
27. | H. Böttner, G. Chen, R. Venkatasubramanian, MRS Bull., 2006, 31, 211 |
28. | V. Pardo, A. S. Botana, D. Baldomir, Phys. Rev. B, 2013, 87, 125148 |
29. | D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, H. Xie, Nano-Micro Lett., 2020, 12, 36 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Optimized carrier concentration of polycrystalline HMS at different temperature calculated based on the single parabolic band model[17]. Copyright 2018, Wiley. b Energy/barrier potential difference and charge transfer among the MnSi, Ag, Graphite, Ge, Si, Pt, SiO2, SiC nano-precipitates and HMS matrix.
Schematic diagram of low-dimensionalization techniques including nanocrystallization, embedding QDs and forming thin film.