Citation: | Jinfeng Dong, Jing Gao, Qingyu Yan. High entropy strategy on thermoelectric materials[J]. Materials Lab, 2023, 2(2): 230001. doi: 10.54227/mlab.20230001 |
High-entropy materials, which consist of multiple elements occupying a single sublattice in a disordered manner, have emerged as innovative material systems with various promising applications. Many macroscopic physical properties, such as electrical transport and thermal transport, are closely related to the periodic distribution of atoms. In high-entropy compounds, the long-range periodic arrangement of atoms is broken down by the disordered distribution of various elements, which would lead to changes in physical properties. Therefore, the high-entropy idea will open new avenues for designing these functional materials with promising performance and high reliability. This perspective focuses on the high-entropy strategies of thermoelectric materials, discussing how high entropy will alter their properties. The possible routes of designing high-entropy high-performance thermoelectric materials are prospected, which can also provide enlightenment for the development of high-entropy systems in other research fields.
1. | J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater., 2004, 6, 299 |
2. | E. P. George, D. Raabe, R. O. Ritchie, Nat. Rev. Mater., 2019, 4, 515 |
3. | C. Oses, C. Toher, S. Curtarolo, Nat. Rev. Mater., 2020, 5, 295 |
4. | B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, R. O. Ritchie, Science, 2014, 345, 1153 |
5. | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J. Pennycook, J. He, Science, 2021, 371, 830 |
6. | B. Yang, Y. Zhang, H. Pan, W. Si, Q. Zhang, Z. Shen, Y. Yu, S. Lan, F. Meng, Y. Liu, H. Huang, J. He, L. Gu, S. Zhang, L.-Q. Chen, J. Zhu, C.-W. Nan, Y.-H. Lin, Nat. Mater., 2022, 21, 1074 |
7. | D. Nita, Materials Lab, 2022, 1, 220001 |
8. | C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, J.-P. Maria, Nat. Commun., 2015, 6, 8485 |
9. | D. B. Miracle, O. N. Senkov, Acta. Mater., 2017, 122, 448 |
10. | Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, Mater. Today, 2016, 19, 349 |
11. | B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Mater. Sci. Eng.: A, 2004, 375−377, 213 |
12. | W. Huang, J. Zhang, D. Liu, W. Xu, Y. Wang, J. Yao, H. T. Tan, K. N. Dinh, C. Wu, M. Kuang, W. Fang, R. Dangol, L. Song, K. Zhou, C. Liu, J. W. Xu, B. Liu, Q. Yan, ACS Nano, 2020, 14, 17640 |
13. | Y. Sun, S. Dai, Sci. Adv., 2021, 7, eabg1600 |
14. | D. Bérardan, S. Franger, D. Dragoe, A. K. Meena, N. Dragoe, Phy. Status Solidi - Rapid Res. Lett., 2016, 10, 328 |
15. | R. Liu, H. Chen, K. Zhao, Y. Qin, B. Jiang, T. Zhang, G. Sha, X. Shi, C. Uher, W. Zhang, L. Chen, Adv. Mater., 2017, 29, 1702712 |
16. | Y. B. Luo, S. Q. Hao, S. T. Cai, T. J. Slade, Z. Z. Luo, V. P. Dravid, C. Wolverton, Q. Y. Yan, M. G. Kanatzidis, J. Am. Chem. Soc., 2020, 142, 15187 |
17. | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J. Pennycook, J. He, Science, 2021, 371, 830 |
18. | Z. Chen, X. Zhang, Y. Pei, Adv. Mater., 2018, 30, 1705617 |
19. | T.-R. Wei, M. Guan, J. Yu, T. Zhu, L. Chen, X. Shi, Joule, 2018, 2, 2183 |
20. | G. J. Snyder, E. S. Toberer, Nat. Mater., 2008, 7, 105 |
21. | J. Dong, Y. Jiang, Y. Sun, J. Liu, J. Pei, W. Li, X. Y. Tan, L. Hu, N. Jia, B. Xu, Q. Li, J.-F. Li, Q. Yan, M. G. Kanatzidis, J. Am. Chem. Soc., 2023, 145, 1988 |
22. | Z. Chen, X. Zhang, S. Lin, L. Chen, Y. Pei, Natl. Sci. Rev., 2018, 5, 888 |
23. | E. S. Toberer, A. Zevalkink, G. J. Snyder, J. Mater. Chem., 2011, 21, 15843 |
24. | X. Wang, H. Yao, Z. Zhang, X. Li, C. Chen, L. Yin, K. Hu, Y. Yan, Z. Li, B. Yu, F. Cao, X. Liu, X. Lin, Q. Zhang, ACS Appl. Mater. Interfaces, 2021, 13, 18638 |
25. | Z. Ma, T. Xu, W. Li, Y. Cheng, J. Li, D. Zhang, Q. Jiang, Y. Luo, J. Yang, Adv. Funct. Mater., 2021, 31, 2103197 |
26. | B. Jiang, W. Wang, S. Liu, Y. Wang, C. Wang, Y. Chen, L. Xie, M. Huang, J. He, Science, 2022, 377, 208 |
27. | S. Zhi, J. Li, L. Hu, J. Li, N. Li, H. Wu, F. Liu, C. Zhang, W. Ao, H. Xie, X. Zhao, S. J. Pennycook, T. Zhu, Adv. Sci., 2021, 8, 2100220 |
28. | National Academies of Sciences, and Medicine, High-Entropy Materials, Ultra-Strong Molecules, and Nanoelectronics: Emerging Capabilities and Research Objectives: Proceedings of a Workshop, National Academies Press, America, 2020. |
29. | L. Hu, Y. Zhang, H. Wu, J. Li, Y. Li, M. McKenna, J. He, F. Liu, S. J. Pennycook, X. Zeng, Adv. Energy Mater., 2018, 8, 1802116 |
30. | R. J. Korkosz, T. C. Chasapis, S.-h. Lo, J. W. Doak, Y. J. Kim, C.-I. Wu, E. Hatzikraniotis, T. P. Hogan, D. N. Seidman, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc., 2014, 136, 3225 |
31. | M. Lannoo, Point defects in semiconductors I: theoretical aspects, Springer Science & Business Media, Germany, 2012. |
32. | X. Y. Tan, J. Dong, N. Jia, H.-X. Zhang, R. Ji, A. Suwardi, Z.-L. Li, Q. Zhu, J.-W. Xu, Q.-Y. Yan, Rare Metals, 2022, 41, 3027 |
33. | S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N. K. Singh, A. Soni, J. He, U. V. Waghmare, K. Biswas, Science, 2021, 371, 722 |
34. | C. M. Rost, Z. Rak, D. W. Brenner, J.-P. Maria, J. Am. Ceram. Soc., 2017, 100, 2732 |
35. | W. Guo, W. Dmowski, J.-Y. Noh, P. Rack, P. K. Liaw, T. Egami, Metall. Mater. Trans. A, 2013, 44, 1994 |
36. | J. Gao, W. Li, J. Liu, Q. Li, J.-F. Li, Research, 2022, 2022, 9782343 |
37. | T. Ghosh, S. Roychowdhury, M. Dutta, K. Biswas, ACS Energy Lett., 2021, 6, 2825 |
38. | H. Wang, X. Cao, Y. Takagiwa, G. J. Snyder, Mater. Horiz., 2015, 2, 323 |
39. | Z. Rao, P.-Y. Tung, R. Xie, Y. Wei, H. Zhang, A. Ferrari, T. P. C. Klaver, F. Körmann, P. T. Sukumar, A. Kwiatkowski da Silva, Y. Chen, Z. Li, D. Ponge, J. Neugebauer, O. Gutfleisch, S. Bauer, D. Raabe, Science, 2022, 378, 78 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a High-entropy compound with a typical Fm-3m structure (AB, sublattice A is engineered with high-entropy). b High-entropy perovskite (ABO3, sublattice A is engineered with high entropy). c Schematic display of electrical resistivity and lattice thermal conductivity for the compound with different entropies.