Citation: | Yuxin Huang, Liangwei Fu, Biao Xu. Single-atom thermoelectric materials: a new opportunity[J]. Materials Lab, 2023, 2(2): 220059. doi: 10.54227/mlab.20220059 |
Single-atom materials show great potential in the field of thermoelectrics due to their distinguishing features such as maximum atom utilization efficiency, unique electronic structure, guest−host interactions, and a tunable coordination environment. Herein, the concept of single-atom thermoelectric materials is presented. Thereafter, we introduce characterization techniques including high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) for identifying the specific coordination environment of single atoms. Furthermore, a typical work demonstrating the effect of single atoms on the thermoelectric transport properties of Bi2S3 is provided. Finally, we propose possible future development paths for single-atom thermoelectric materials. This paper provides a reference for further studies of single-atom thermoelectric materials.
1. | W. Guo, Z. Wang, X. Wang, Y. Wu, Adv. Mater., 2021, 33, 2004287 |
2. | T. Zhang, Z. Chen, A. G. Walsh, Y. Li, P. Zhang, Adv. Mater., 2020, 32, 2002910 |
3. | Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie, A. Hu, W. Yan, X. Kong, X. Wu, H. Ji, L. J. Wan, J. Am. Chem. Soc., 2019, 141, 3977 |
4. | S. K. Kaiser, Z. Chen, D. Faust Akl, S. Mitchell, J. Perez-Ramirez, Chem. Rev., 2020, 120, 11703 |
5. | L. Liu, A. Corma, Chem. Rev., 2018, 118, 4981 |
6. | W. Ma, J. Mao, X. Yang, C. Pan, W. Chen, M. Wang, P. Yu, L. Mao, Y. Li, Chem. Commun., 2018, 55, 159 |
7. | B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem., 2011, 3, 634 |
8. | M. Zhou, Y. Jiang, G. Wang, W. Wu, W. Chen, P. Yu, Y. Lin, J. Mao, L. Mao, Nat. Commun., 2020, 11, 3188 |
9. | C. Zhang, S. Liang, W. Liu, F. T. Eickemeyer, X. Cai, K. Zhou, J. Bian, H. Zhu, C. Zhu, N. Wang, Z. Wang, J. Zhang, Y. Wang, J. Hu, H. Ma, C. Xin, S. M. Zakeeruddin, M. Grätzel, Y. Shi, Nat. Energy, 2021, 6, 1154 |
10. | Q. Zhang, Z. Ti, Y. Zhu, Y. Zhang, Y. Cao, S. Li, M. Wang, D. Li, B. Zou, Y. Hou, P. Wang, G. Tang, ACS Nano, 2021, 15, 19345 |
11. | M. Hong, Z. G. Chen, Acc. Chem. Res., 2022, 55, 3178 |
12. | B. Jiang, W. Wang, S. Liu, Y. Wang, C. Wang, Y. Chen, L. Xie, M. Huang, J. He, Science, 2022, 377, 208 |
13. | L. Su, D. Wang, S. Wang, B. Qin, Y. Wang, Y. Qin, Y. Jin, C. Chang, L.-D. Zhao, Science, 2022, 375, 1385 |
14. | J. Guo, J. Yang, Z. H. Ge, B. Jiang, Y. Qiu, Y. K. Zhu, X. Wang, J. Rong, X. Yu, J. Feng, J. He, Adv. Funct. Mater., 2021, 31, 2102838 |
15. | X. Lou, S. Li, X. Chen, Q. Zhang, H. Deng, J. Zhang, D. Li, X. Zhang, Y. Zhang, H. Zeng, G. Tang, ACS Nano, 2021, 15, 8204 |
16. | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J. Pennycook, J. He, Science, 2021, 371, 830 |
17. | M. M. Mallick, L. Franke, A. G. Rosch, H. Gesswein, Z. Long, Y. M. Eggeler, U. Lemmer, Adv. Sci., 2022, 9, 2202411 |
18. | W. Zhao, K. Jin, L. Fu, Z. Shi, B. Xu, Nano Lett., 2022, 22, 4750 |
19. | C. Gao, J. Low, R. Long, T. Kong, J. Zhu, Y. Xiong, Chem. Rev., 2020, 120, 12175 |
20. | W. H. Lai, Z. Miao, Y. X. Wang, J. Z. Wang, S. L. Chou, Adv. Energy Mater., 2019, 9, 1900722 |
21. | C. Lu, R. Fang, X. Chen, Adv. Mater., 2020, 32, 1906548 |
22. | R. Lang, X. Du, Y. Huang, X. Jiang, Q. Zhang, Y. Guo, K. Liu, B. Qiao, A. Wang, T. Zhang, Chem. Rev., 2020, 120, 11986 |
23. | Y. Zhang, C. Xing, Y. Liu, M. C. Spadaro, X. Wang, M. Li, K. Xiao, T. Zhang, P. Guardia, K. H. Lim, A. O. Moghaddam, J. Llorca, J. Arbiol, M. Ibáñez, A. Cabot, Nano Energy, 2021, 85, 105991 |
24. | Y. Hong, S. Yeon, P. Yox, Z. Yunxiu, M.-H. Choi, D. Moon, K. M. Ok, D.-H. Kim, K. Kovnir, G. J. Miller, T.-S. You, Chem. Mater., 2022, 34, 9903 |
25. | R. Fortulan, S. Aminorroaya Yamini, C. Nwanebu, S. Li, T. Baba, M. J. Reece, T. Mori, ACS Appl. Energy Mater., 2022, 5, 3845 |
26. | L. Y. Lou, J. Yang, Y. K. Zhu, H. Liang, Y. X. Zhang, J. Feng, J. He, Z. H. Ge, L. D. Zhao, Adv. Sci., 2022, 9, 2203250 |
27. | Z. Liu, Y. Pei, H. Geng, J. Zhou, X. Meng, W. Cai, W. Liu, J. Sui, Nano Energy, 2015, 13, 554 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a The HAADF-STEM image of Bi2S3−0.5 wt % Pt1 and its crystal structure, SAED, EDS elemental mapping analysis. In the relative elemental analysis, the green, yellow, and red colors are representing Bi, S, and Pt elements, respectively. b Corresponding FT-EXAFS curves and their fitting lines. c Wavelet transform (WT) plots of Bi2S3−Pt1 samples, PtS2, Bi2S3−Ptn samples and Pt foil standard. d XPS of Pt 4f spectra for Bi2S3−Pt1, Bi2S3−Ptn samples[18]. Copyright 2022, American Chemical Society.
a The lattice thermal conductivity and correspondingly simulated results. b The ZT value of Bi2S3 substrate and Bi2S3−Pt samples[18]. Copyright 2022, American Chemical Society.