Citation: | Yu Pan, Bin He, Claudia Felser. Thermoelectric transport properties of single-crystalline ZrCoBi half-Heusler[J]. Materials Lab, 2023, 2(3): 230016. doi: 10.54227/mlab.20230016 |
Half-Heusler compounds are one of most promising thermoelectric materials for power generation at high temperatures. Recent studies focus on fine-grained polycrystalline samples because of their lower thermal conductivity, and the induced defects are found to play an important role in the thermoelectric transport properties. Here, we report the thermoelectric transport properties of single-crystalline ZrCoBi. Two samples from different batches clarify the same charge carrier concentration of ~1020 cm−3, denoting the robust Fermi level position in the ZrCoBi single crystals. The high electron density is attributed to the Co interstitial point defects. Moreover, a high power factor of over 3.3 mW m−1 K−2 is achieved in the single-crystalline ZrCoBi. By comparing the thermoelectric properties of single-crystalline and fine-grained polycrystalline samples, we reveal the role of grain boundary scattering in reducing the thermal conductivity from ~11.5 W m−1 K−1 to ~9 W m−1 K−1 at 300 K. The present work declares the significance of defects in tuning the transport properties of ZrCoBi half-Heusler compound.
1. | L. E. Bell, Science, 2008, 321, 1457 |
2. | G. J. Snyder, E. S. Toberer, Nat. Mater., 2008, 7, 105 |
3. | J. Mao, G. Chen and Z. Ren, Nat. Mater., 2021, 20, 454 |
4. | J. He, T. M. Tritt, Science, 2017, 357, eaak9997 |
5. | H. S. Kim, W. Liu, G. Chen, C.-W. Chu and Z. Ren, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 8205 |
6. | M. Jonson, G. D. Mohan, Phys. Rev. B, 1980, 21, 4223 |
7. | N. W. Ashcroft, N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, America, 1976. |
8. | Y. Pei, Z. M. Gibbs, A. Gloskovskii, B. Balke, W. G. Zeier and G. J. Snyder, Adv. Energy Mater., 2014, 4, 1400486 |
9. | J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science, 2008, 321, 554 |
10. | J.-F. Li, W.-S. Liu, L.-D. Zhao and M. Zhou, NPG Asia Mater., 2010, 2, 152 |
11. | K. Biswas, J. He, I. D. Blum, C.-I Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature, 2012, 489, 414 |
12. | M. Zou, J.-F. Li, P. Guo and T. Kita, J. Phys. D: Appl. Phys., 2010, 43, 415403 |
13. | Y. Pan, U. Aydemir, J. A. Grovogui, I. T. Witting, R. Hanus, Y. Xu, J. Wu, C.-F. Wu, F.-H. Sun, H.-L. Zhuang, J.-F. Dong, J.-F. Li, V. P. Dravid and G. J. Snyder, Adv. Mater., 2018, 30, 1802016 |
14. | Y. Pan, T.-R. Wei, Q. Cao and J.-F. Li, Mater. Sci. Eng. B, 2015, 197, 75 |
15. | B. Cai, H. Hu, H.-L. Zhuang and J.-F. Li, J. Alloys Compd., 2019, 806, 471 |
16. | H. Zhu, R. He, J. Mao, Q. Zhu, C. Li, J. Sun, W. Ren, Y. Wang, Z. Liu, Z. Tang, A. Sotnikov, Z. Wang, D. Broido, D. J. Singh, G. Chen, K. Nielsch and Z. Ren, Nat. Commun., 2018, 9, 2497 |
17. | H. Zhu, J. Mao, Z. Feng, J. Sun, Q. Zhu, Z. Liu, D. J. Singh, Y. Wang and Z. Ren, Sci. Adv., 2019, 5, eaav5813 |
18. | J. P. Heremans, C. M. Thrush and D. T. Morelli, Phys. Rev. B, 2004, 70, 115334 |
19. | D. Zhao, M. Zuo, L. Bo and Y. Wang, Mater., 2018, 11, 728 |
20. | R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T. O. L. Sunde, D. Chon, K. R. Poeppelmeier and A. Zunger, Nat. Chem., 2015, 7, 308 |
21. | Z. Liu, S. Guo, Y. Wu, J. Mao, Q. Zhu, H. Zhu, Y. Pei, J. Sui, Y. Zhang and Z. Ren, Adv. Funct. Mater., 2019, 29, 1905044 |
22. | M. Zou, J.-F. Li and T. Kita, J. Solid State Chem., 2013, 198, 125 |
23. | Y. Pan, T.-R. Wei, C.-F. Wu and J.-F. Li, J. Mater. Chem. C, 2015, 3, 10583 |
24. | F. Serrano-Sanchez, M. Yao, B. He, D. Chen, A. Gloskovskii, A. Fedorov, G. Auffermann, E. Liu, U. Burkhardt, G. H. Fecher, C. Fu, C. Felser and Y. Pan, Nanoscale, 2022, 14, 10067 |
25. | H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang and G. J. Snyder, APL Mater., 2015, 3, 041506 |
26. | T. Fang, X. Zhao and T. Zhu, Mater., 2018, 11, 847 |
27. | M. Zou, J.-F. Li, B. Du, D. Liu and T. Kita, J. Solid State Chem., 2009, 182, 3138 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Laue diffraction pattern of the present ZrCoBi single crystal along the (111) direction.
a Backscattered electron (BSE) image, b and c element mapping images of the as-grown single crystal. d Energy-dispersive X-ray spectroscopy (EDX) analysis at various areas on the ZrCoBi single crystal. The inset presents the atomic concentration of Zr, Co, and Bi. e X-ray diffraction (XRD) pattern of the ZrCoBi powder grounded from the as-grown single crystals. The insert star symbol represented the secondary phase Bi.
a Temperature dependence of longitudinal resistivity, and b magnetic field dependence of the Hall resistivity. Temperature dependence of c Hall charge carrier concentration and d Hall charge carrier mobility of two single-crystalline ZrCoBi samples.
a Sample setup for thermoelectric transport properties measurement. Temperature dependence of b Seebeck coefficient and c power factor for single-crystalline ZrCoBi sample #1. SC and PC represents single crystal and polycrystal, respectively. d Pisarenko plot of the present sample #1, with a comparison to other reports in polycrystalline ZrCoBi samples.
Temperature dependence of a total thermal conductivity and b lattice thermal conductivity of the ZrCoBi single crystal (SC), with a comparison to the lattice thermal conductivity of the ZrCoBi polycrystal (PC).