Yu Pan, Bin He, Claudia Felser. Thermoelectric transport properties of single-crystalline ZrCoBi half-Heusler[J]. Materials Lab, 2023, 2(3): 230016. doi: 10.54227/mlab.20230016
Citation: Yu Pan, Bin He, Claudia Felser. Thermoelectric transport properties of single-crystalline ZrCoBi half-Heusler[J]. Materials Lab, 2023, 2(3): 230016. doi: 10.54227/mlab.20230016

RESEARCH ARTICLE

Thermoelectric transport properties of single-crystalline ZrCoBi half-Heusler

More Information
  • Corresponding author: yu.pan@cpfs.mpg.de
  • Half-Heusler compounds are one of most promising thermoelectric materials for power generation at high temperatures. Recent studies focus on fine-grained polycrystalline samples because of their lower thermal conductivity, and the induced defects are found to play an important role in the thermoelectric transport properties. Here, we report the thermoelectric transport properties of single-crystalline ZrCoBi. Two samples from different batches clarify the same charge carrier concentration of ~1020 cm−3, denoting the robust Fermi level position in the ZrCoBi single crystals. The high electron density is attributed to the Co interstitial point defects. Moreover, a high power factor of over 3.3 mW m−1 K−2 is achieved in the single-crystalline ZrCoBi. By comparing the thermoelectric properties of single-crystalline and fine-grained polycrystalline samples, we reveal the role of grain boundary scattering in reducing the thermal conductivity from ~11.5 W m−1 K−1 to ~9 W m−1 K−1 at 300 K. The present work declares the significance of defects in tuning the transport properties of ZrCoBi half-Heusler compound.


  • 加载中
  • 1. L. E. Bell, Science, 2008, 321, 1457
    2. G. J. Snyder, E. S. Toberer, Nat. Mater., 2008, 7, 105
    3. J. Mao, G. Chen and Z. Ren, Nat. Mater., 2021, 20, 454
    4. J. He, T. M. Tritt, Science, 2017, 357, eaak9997
    5. H. S. Kim, W. Liu, G. Chen, C.-W. Chu and Z. Ren, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 8205
    6. M. Jonson, G. D. Mohan, Phys. Rev. B, 1980, 21, 4223
    7. N. W. Ashcroft, N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, America, 1976.
    8. Y. Pei, Z. M. Gibbs, A. Gloskovskii, B. Balke, W. G. Zeier and G. J. Snyder, Adv. Energy Mater., 2014, 4, 1400486
    9. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science, 2008, 321, 554
    10. J.-F. Li, W.-S. Liu, L.-D. Zhao and M. Zhou, NPG Asia Mater., 2010, 2, 152
    11. K. Biswas, J. He, I. D. Blum, C.-I Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature, 2012, 489, 414
    12. M. Zou, J.-F. Li, P. Guo and T. Kita, J. Phys. D: Appl. Phys., 2010, 43, 415403
    13. Y. Pan, U. Aydemir, J. A. Grovogui, I. T. Witting, R. Hanus, Y. Xu, J. Wu, C.-F. Wu, F.-H. Sun, H.-L. Zhuang, J.-F. Dong, J.-F. Li, V. P. Dravid and G. J. Snyder, Adv. Mater., 2018, 30, 1802016
    14. Y. Pan, T.-R. Wei, Q. Cao and J.-F. Li, Mater. Sci. Eng. B, 2015, 197, 75
    15. B. Cai, H. Hu, H.-L. Zhuang and J.-F. Li, J. Alloys Compd., 2019, 806, 471
    16. H. Zhu, R. He, J. Mao, Q. Zhu, C. Li, J. Sun, W. Ren, Y. Wang, Z. Liu, Z. Tang, A. Sotnikov, Z. Wang, D. Broido, D. J. Singh, G. Chen, K. Nielsch and Z. Ren, Nat. Commun., 2018, 9, 2497
    17. H. Zhu, J. Mao, Z. Feng, J. Sun, Q. Zhu, Z. Liu, D. J. Singh, Y. Wang and Z. Ren, Sci. Adv., 2019, 5, eaav5813
    18. J. P. Heremans, C. M. Thrush and D. T. Morelli, Phys. Rev. B, 2004, 70, 115334
    19. D. Zhao, M. Zuo, L. Bo and Y. Wang, Mater., 2018, 11, 728
    20. R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T. O. L. Sunde, D. Chon, K. R. Poeppelmeier and A. Zunger, Nat. Chem., 2015, 7, 308
    21. Z. Liu, S. Guo, Y. Wu, J. Mao, Q. Zhu, H. Zhu, Y. Pei, J. Sui, Y. Zhang and Z. Ren, Adv. Funct. Mater., 2019, 29, 1905044
    22. M. Zou, J.-F. Li and T. Kita, J. Solid State Chem., 2013, 198, 125
    23. Y. Pan, T.-R. Wei, C.-F. Wu and J.-F. Li, J. Mater. Chem. C, 2015, 3, 10583
    24. F. Serrano-Sanchez, M. Yao, B. He, D. Chen, A. Gloskovskii, A. Fedorov, G. Auffermann, E. Liu, U. Burkhardt, G. H. Fecher, C. Fu, C. Felser and Y. Pan, Nanoscale, 2022, 14, 10067
    25. H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang and G. J. Snyder, APL Mater., 2015, 3, 041506
    26. T. Fang, X. Zhao and T. Zhu, Mater., 2018, 11, 847
    27. M. Zou, J.-F. Li, B. Du, D. Liu and T. Kita, J. Solid State Chem., 2009, 182, 3138
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Information

Article Metrics

Article views(1775) PDF downloads(869) Citation(0)

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint