Jörg Kröger, Nicolas Néel, Simon Crampin. Quantum confinement of electrons at metal surfaces[J]. Materials Lab, 2023, 2(3): 230006. doi: 10.54227/mlab.20230006
Citation: Jörg Kröger, Nicolas Néel, Simon Crampin. Quantum confinement of electrons at metal surfaces[J]. Materials Lab, 2023, 2(3): 230006. doi: 10.54227/mlab.20230006

REVIEW ARTICLE

Quantum confinement of electrons at metal surfaces

Published as part of the Virtual Special Issue "Functional materials with unique physical and chemical properties"

More Information
  • Corresponding author: joerg.kroeger@tu-ilmenau.de
  • Scanning tunneling microscopy and spectroscopy experiments on surface-localized electron states confined to nanometer-scaled resonators are reviewed from the first observations to the recently discovered novel reflection mechanism of electron de Broglie waves. The focus of the presented work is on lateral confinement and on processes leading to finite decay rates of the confined states.


  • 加载中
  • Jörg Kröger studied physics at the RWTH Aachen university. He received his PhD degree in 1995 for a work on surface phonons with electron energy loss spectroscopy. Postdoctoral studies with angle-resolved photoelectron spectroscopy were performed at the University of Zurich and the synchrotrone ELETTRA. At the Christian-Albrechts University of Kiel he was in charge of building and operating a custom-made scanning tunneling microscope. Since March 2010 he is professor at the Technical University of Ilmenau where he uses low-temperature scanning probe techniques to study the quantum physics of surfaces and interfaces .
    Dr. Nicolas Néel is a senior scientist at the Technical University of Ilmenau. His main research activities deal with the investigation of atomic scale structures and two-dimensional layers on surfaces using scanning tunneling and atomic force microscopy. He studied at the Université Paris Sud XI (France) where he obtained his DEA in physics in 1999. He did his Ph.D. at the Commissariat á l’Energie Atomique in Saclay (France) where he investigated the growth of metallic nanostructure and was graduated in physics in 2004. From 2004 to 2011 he worked at the Christian-Albrecht Universität of Kiel as a post doctoral fellow working on atomic / molecular contacts and magnetic systems .
    Simon Crampin studied physics at the Imperial College in London where he received his PhD degree in 1989. Unti 1990 he was a research associate at the Blackett Laboratory of the Imperial College and became a Royal Society Leverhulme William and Mary Fellow from 1991 to 1992. He continued his career as a research associate at the University of Nijmegen (The Netherlands) from 1992 to 1993 and at the Cavendish Laboratory of the University of Cambridge from 1993 to 1994. Since November 1994 he has been working at the University of Bath. Simon Crampin mainly studies the electronic structure of solids, especially at surfaces and interfaces where the reduction in translational symmetry gives rise to new physics. The research involves the development of theoretical and computational techniques, primarily Green function methods and variational embedding schemes which can properly and elegantly accommodate the awkward surface or interface boundary conditions .
  • 1. R. E. Thomas, J. Appl. Phys., 1970, 41, 5330
    2. M. Milun, P. Pervan and D. P. Woodruff, Rep. Prog. Phys., 2002, 65, 99
    3. M. F. Crommie, C. P. Lutz and D. M. Eigler, Nature, 1993, 363, 524
    4. Y. Hasegawa and Ph. Avouris, Phys. Rev. Lett., 1993, 71, 1071
    5. M. F. Crommie, C. P. Lutz and D. M. Eigler, Science, 1993, 262, 218
    6. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, Science, 2001, 294, 1488
    7. G. Burkard, H.-A. Engel and D. Loss, Spintronics, quantum computing, and quantum communication in quantum dots, in Fundamentals of Quantum Information: Quantum Computation, Communication, Decoherence and All That, Springer, Germany, 2002.
    8. G. Konstantatos, Colloidal quantum dot optoelectronics and photovoltaics, Cambridge University Press, UK, 2013.
    9. S. Nakamura, Rev. Mod. Phys., 2015, 87, 1139
    10. P. V. Kamat, J. Phys. Chem. Lett., 2013, 4, 908
    11. J. Zhao, M. A. Holmes and F. E. Osterloh, ACS Nano, 2013, 7, 4316
    12. J. J. Paggel, T. Miller and T.-C. Chiang, Science, 1999, 283, 1709
    13. X. Ma, P. Jiang, Y. Qi, J. Jia, Y. Yang, W. Duan, W.-X. Li, X. Bao, S. B. Zhang and Q.-K. Xue, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 9204
    14. L. Aballe, A. Barinov, A. Locatelli, S. Heun and M. Kiskinova, Phys. Rev. Lett., 2004, 93, 196103
    15. Y. Jia, M. Özer, H. Weitering and Z. Zhang, Nanophenomena at surfaces: Fundamentals of exotic condensed matter properties, Springer, Germany, 2011.
    16. J. E. Ortega, F. J. Himpsel, G. J. Mankey and R. F. Willis, Phys. Rev. B, 1993, 47, 1540
    17. A. C. Ehrlich, Phys. Rev. Lett., 1993, 71, 2300
    18. C. Carbone, E. Vescovo, O. Rader, W. Gudat and W. Eberhardt, Phys. Rev. Lett., 1993, 71, 2805
    19. D. Li, J. Pearson, J. E. Mattson, S. D. Bader and P. D. Johnson, Phys. Rev. B, 1995, 51, 7195
    20. C. Hwang and F. J. Himpsel, Phys. Rev. B, 1995, 52, 15368
    21. Z. T. Diao, S. Tsunashima, M. Jimbo and S. Iwata, Journal of Physics: Condensed Matter, 1996, 8, 4959
    22. A. F. Santander-Syro, F. Fortuna, C. Bareille, T. C. Rodel, G. Landolt, N. C. Plumb, J. H. Dil and M. Radovic, Nat. Mater., 2014, 13, 1085
    23. C. M. Wei and M. Y. Chou, Phys. Rev. B, 2002, 66, 233408
    24. D. Eom, S. Qin, M.-Y. Chou and C. K. Shih, Phys. Rev. Lett., 2006, 96, 027005
    25. Y. Guo, Y.-F. Zhang, X.-Y. Bao, T.-Z. Han, Z. Tang, L.-X. Zhang, W.-G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J.-F. Jia, Z.-X. Zhao and Q.-K. Xue, Science, 2004, 306, 1915
    26. S. Qin, J. Kim, Q. Niu and C.-K. Shih, Science, 2009, 324, 1314
    27. T. Uchihashi, Superconductor Science and Technology, 2017, 30, 013002
    28. T. Uchihashi, Japanese Journal of Applied Physics, 2016, 55, 1102A5
    29. A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J. G. Hou and Q. Zhu, Science, 2005, 309, 1542
    30. T. Uchihashi, J. Zhang, J. Kröger and R. Berndt, Phys. Rev. B, 2008, 78, 033402
    31. P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann and U. Höfer, Surface Science Reports, 2004, 52, 219
    32. M. C. Barr, M. P. Zaletel and E. J. Heller, Nano Letters, 2010, 10, 3253
    33. J. Bardeen, Phys. Rev. Lett., 1961, 6, 57
    34. J. G. Simmons, Journal of Applied Physics, 1963, 34, 1793
    35. J. G. Simmons, Journal of Applied Physics, 1963, 34, 2581
    36. G. Wentzel, Zeitschrift für Physik, 1926, 38, 518
    37. H. A. Kramers, Zeitschrift für Physik, 1926, 39, 828
    38. L. Brillouin, Comptes rendus de l’Académie des Sciences, 1926, 183, 24
    39. J. Tersoff and D. R. Hamann, Phys. Rev. Lett., 1983, 50, 1998
    40. J. Tersoff and D. R. Hamann, Phys. Rev. B, 1985, 31, 805
    41. M. L. Maede, Lock-in amplifiers: principles and applications, Peter Peregrinus Ltd., UK, 1983.
    42. J. A. Stroscio, R. M. Feenstra and A. P. Fein, Phys. Rev. Lett., 1986, 57, 2579
    43. J. Li, W.-D. Schneider and R. Berndt, Phys. Rev. B, 1997, 56, 7656
    44. B. Koslowski, C. Dietrich, A. Tschetschetkin and P. Ziemann, Phys. Rev. B, 2007, 75, 035421
    45. C. Wagner, R. Franke and T. Fritz, Phys. Rev. B, 2007, 75, 235432
    46. M. Passoni, F. Donati, A. Li Bassi, C. S. Casari and C. E. Bottani, Phys. Rev. B, 2009, 79, 045404
    47. M. Ziegler, N. Néel, A. Sperl, J. Kröger and R. Berndt, Phys. Rev. B, 2009, 80, 125402
    48. B. Koslowski, H. Pfeifer and P. Ziemann, Phys. Rev. B, 2009, 80, 165419
    49. G. Reecht, B. W. Heinrich, H. Bulou, F. Scheurer, L. Limot and G. Schull, New Journal of Physics, 2017, 19, 113033
    50. R. Rejali, L. Farinacci and S. Otte, Phys. Rev. B, 2023, 107, 035406
    51. W. Shockley, Phys. Rev., 1939, 56, 317
    52. P. O. Gartland and B. J. Slagsvold, Phys. Rev. B, 1975, 12, 4047
    53. S. D. Kevan, Phys. Rev. Lett., 1983, 50, 526
    54. F. Reinert, G. Nicolay, S. Schmidt, D. Ehm and S. Hüfner, Phys. Rev. B, 2001, 63, 115415
    55. L. Bürgi, O. Jeandupeux, H. Brune and K. Kern, Phys. Rev. Lett., 1999, 82, 4516
    56. S. Crampin, J. Kröger, H. Jensen and R. Berndt, Phys. Rev. Lett., 2005, 95, 029701
    57. O. Jeandupeux, L. Bürgi, A. Hirstein, H. Brune and K. Kern, Phys. Rev. B, 1999, 59, 15926
    58. J. I. Pascual, Z. Song, J. J. Jackiw, K. Horn and H.-P. Rust, Phys. Rev. B, 2001, 63, 241103
    59. L. Petersen and P. Hedegård, Surface Science, 2000, 459, 49
    60. H. Hirayama, Y. Aoki and C. Kato, Phys. Rev. Lett., 2011, 107, 027204
    61. R. S. Becker, J. A. Golovchenko and B. S. Swartzentruber, Nature, 1987, 325, 419
    62. D. M. Eigler and E. K. Schweizer, Nature, 1990, 344, 524
    63. H. C. Manoharan, C. P. Lutz and D. M. Eigler, Nature, 2000, 403, 512
    64. J. Kondo, Progress of Theoretical Physics, 1964, 32, 37
    65. J. Li, W.-D. Schneider, R. Berndt and B. Delley, Phys. Rev. Lett., 1998, 80, 2893
    66. V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie and N. S. Wingreen, Science, 1998, 280, 567
    67. G. A. Fiete, J. S. Hersch, E. J. Heller, H. C. Manoharan, C. P. Lutz and D. M. Eigler, Phys. Rev. Lett., 2001, 86, 2392
    68. G. A. Fiete and E. J. Heller, Rev. Mod. Phys., 2003, 75, 933
    69. V. S. Stepanyuk, L. Niebergall, W. Hergert and P. Bruno, Phys. Rev. Lett., 2005, 94, 187201
    70. H. Oka, O. O. Brovko, M. Corbetta, V. S. Stepanyuk, D. Sander and J. Kirschner, Rev. Mod. Phys., 2014, 86, 1127
    71. A. A. Khajetoorians, J. Wiebe, B. Chilian, S. Lounis, S. Blügel and R. Wiesendanger, Nature Physics, 2012, 8, 497
    72. J. Kliewer, R. Berndt and S. Crampin, Phys. Rev. Lett., 2000, 85, 4936
    73. J. Kliewer, R. Berndt and S. Crampin, New Journal of Physics, 2001, 3, 22
    74. K.-F. Braun and K.-H. Rieder, Phys. Rev. Lett., 2002, 88, 096801
    75. N. Nilius, T. M. Wallis and W. Ho, Science, 2002, 297, 1853
    76. T. M. Wallis, N. Nilius and W. Ho, Phys. Rev. Lett., 2002, 89, 236802
    77. S. Fölsch, P. Hyldgaard, R. Koch and K. H. Ploog, Phys. Rev. Lett., 2004, 92, 056803
    78. A. Sperl, J. Kröger, N. Néel, H. Jensen, R. Berndt, A. Franke and E. Pehlke, Phys. Rev. B, 2008, 77, 085422
    79. A. Sperl, J. Kröger and R. Berndt, physica status solidi (b), 2010, 247, 1077
    80. V. D. Pham, K. Kanisawa and S. Fölsch, Phys. Rev. Lett., 2019, 123, 066801
    81. L. R. O. F.R.S., The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1910, 20, 1001
    82. G. Mie, Annalen der Physik, 1908, 330, 377
    83. P. Debye, Annalen der Physik, 1909, 335, 57
    84. A. N. Oraevsky, Quantum Electronics, 2002, 32, 377
    85. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria and G. Righini, Laser & Photonics Reviews, 2010, 4, 457
    86. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco and A. Y. Cho, Science, 1998, 280, 1556
    87. Y. Baryshnikov, P. Heider, W. Parz and V. Zharnitsky, Phys. Rev. Lett., 2004, 93, 133902
    88. K. G. Budden, H. G. Martin and N. F. Mott, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1962, 265, 554
    89. P. L. Stanwix, M. E. Tobar, P. Wolf, M. Susli, C. R. Locke, E. N. Ivanov, J. Winterflood and F. van Kann, Phys. Rev. Lett., 2005, 95, 040404
    90. R. Mendis and D. M. Mittleman, Applied Physics Letters, 2010, 97, 031106
    91. F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech and A. Forchel, Applied Physics Letters, 2010, 97, 101108
    92. J. K. Hyun, M. Couillard, P. Rajendran, C. M. Liddell and D. A. Muller, Applied Physics Letters, 2008, 93, 243106
    93. C. Liu and J. A. Golovchenko, Phys. Rev. Lett., 1997, 79, 788
    94. V. V. Nesvizhevsky, A. Y. Voronin, R. Cubitt and K. V. Protasov, Nature Physics, 2010, 6, 114
    95. O. Dragún and H. Überall, Physics Letters B, 1980, 94, 24
    96. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang and K. Vahala, Nature, 2009, 457, 455
    97. L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu and X. Shen, Phys. Rev. Lett., 2008, 100, 156403
    98. G. Reecht, H. Bulou, F. Scheurer, V. Speisser, B. Carri`ere, F. Mathevet and G. Schull, Phys. Rev. Lett., 2013, 110, 056802
    99. Y. Zhao, J. Wyrick, F. D. Natterer, J. F. Rodriguez-Nieva, C. Lewandowski, K. Watanabe, T. Taniguchi, L. S. Levitov, N. B. Zhitenev and J. A. Stroscio, Science, 2015, 348, 672
    100. P. Avouris and I.-W. Lyo, Science, 1994, 264, 942
    101. J. Li, W. D. Schneider, R. Berndt and S. Crampin, Phys. Rev. Lett., 1998, 80, 3332
    102. I. Barke and H. Hövel, Phys. Rev. Lett., 2003, 90, 166801
    103. L. Bürgi, O. Jeandupeux, A. Hirstein, H. Brune and K. Kern, Phys. Rev. Lett., 1998, 81, 5370
    104. H. Jensen, J. Kröger, R. Berndt and S. Crampin, Phys. Rev. B, 2005, 71, 155417
    105. J. Kröger, L. Limot, H. Jensen, R. Berndt, S. Crampin and E. Pehlke, Progress in Surface Science, 2005, 80, 26
    106. S. Crampin, H. Jensen, J. Kröger, L. Limot and R. Berndt, Phys. Rev. B, 2005, 72, 035443
    107. J. Kröger, M. Becker, H. Jensen, T. von Hofe, N. Néel, L. Limot, R. Berndt, S. Crampin, E. Pehlke, C. Corriol, V. Silkin, D. Sánchez-Portal, A. Arnau, E. Chulkov and P. Echenique, Progress in Surface Science, 2007, 82, 293
    108. L. Niebergall, G. Rodary, H. F. Ding, D. Sander, V. S. Stepanyuk, P. Bruno and J. Kirschner, Phys. Rev. B, 2006, 74, 195436
    109. A. Eiguren, B. Hellsing, F. Reinert, G. Nicolay, E. V. Chulkov, V. M. Silkin, S. Hüfner and P. M. Echenique, Phys. Rev. Lett., 2002, 88, 066805
    110. L. Vitali, P. Wahl, M. Schneider, K. Kern, V. Silkin, E. Chulkov and P. Echenique, Surface Science, 2003, 523, L47
    111. C. Tournier-Colletta, B. Kierren, Y. Fagot-Revurat and D. Malterre, Phys. Rev. Lett., 2010, 104, 016802
    112. S. Grothe, S. Johnston, S. Chi, P. Dosanjh, S. A. Burke and Y. Pennec, Phys. Rev. Lett., 2013, 111, 246804
    113. O. Klein, Zeitschrift für Physik, 1929, 53, 157
    114. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys., 2009, 81, 109
    115. M. I. Katsnelson, K. S. Novoselov and A. K. Geim, Nature Physics, 2006, 2, 620
    116. C. Gutiérrez, L. Brown, C.-J. Kim, J. Park and A. N. Pasupathy, Nature Physics, 2016, 12, 1069
    117. J. Lee, D. Wong, J. Velasco Jr, J. F. Rodriguez-Nieva, S. Kahn, H.-Z. Tsai, T. Taniguchi, K. Watanabe, A. Zettl, F. Wang, L. S. Levitov and M. F. Crommie, Nature Physics, 2016, 12, 1032
    118. Z. Ge, F. Joucken, E. Quezada, D. R. da Costa, J. Davenport, B. Giraldo, T. Taniguchi, K. Watanabe, N. P. Kobayashi, T. Low and J. J. Velasco, Nano Letters, 2020, 20, 8682
    119. S.-Y. Li and L. He, Frontiers of Physics, 2021, 17, 33201
    120. S.-h. Phark, J. Borme, A. L. Vanegas, M. Corbetta, D. Sander and J. Kirschner, ACS Nano, 2011, 5, 8162
    121. S. K. Hämäläinen, Z. Sun, M. P. Boneschanscher, A. Uppstu, M. Ijäs, A. Harju, D. Vanmaekelbergh and P. Liljeroth, Phys. Rev. Lett., 2011, 107, 236803
    122. S. J. Altenburg, J. Kröger, T. O. Wehling, B. Sachs, A. I. Lichtenstein and R. Berndt, Phys. Rev. Lett., 2012, 108, 206805
    123. W. Jolie, F. Craes, M. Petrović, N. Atodiresei, V. Caciuc, S. Blügel, M. Kralj, T. Michely and C. Busse, Phys. Rev. B, 2014, 89, 155435
    124. W. Jolie, F. Craes and C. Busse, Phys. Rev. B, 2015, 91, 115419
    125. H. W. Kim, S. Takemoto, E. Minamitani, T. Okada, T. Takami, K. Motobayashi, M. Trenary, M. Kawai, N. Kobayashi and Y. Kim, The Journal of Physical Chemistry C, 2016, 120, 345
    126. F. Craes, S. Runte, J. Klinkhammer, M. Kralj, T. Michely and C. Busse, Phys. Rev. Lett., 2013, 111, 056804
    127. A. Mugarza, A. Mascaraque, V. Pérez-Dieste, V. Repain, S. Rousset, F. J. García de Abajo and J. E. Ortega, Phys. Rev. Lett., 2001, 87, 107601
    128. M. Hansmann, J. I. Pascual, G. Ceballos, H.-P. Rust and K. Horn, Phys. Rev. B, 2003, 67, 121409
    129. F. J. Himpsel, J. E. Ortega, G. J. Mankey and R. F. Willis, Advances in Physics, 1998, 47, 511
    130. S. Shiraki, H. Fujisawa, M. Nantoh and M. Kawai, Phys. Rev. Lett., 2004, 92, 096102
    131. F. Baumberger, M. Hengsberger, M. Muntwiler, M. Shi, J. Krempasky, L. Patthey, J. Osterwalder and T. Greber, Phys. Rev. Lett., 2004, 92, 196805
    132. T. Uchihashi, K. Kobayashi and T. Nakayama, Phys. Rev. B, 2010, 82, 113413
    133. T. Uchihashi, P. Mishra, K. Kobayashi and T. Nakayama, Phys. Rev. B, 2011, 84, 195466
    134. I. Piquero-Zulaica, J. Lobo-Checa, Z. M. A. El-Fattah, J. E. Ortega, F. Klappenberger, W. Auwärter and J. V. Barth, Rev. Mod. Phys., 2022, 94, 045008
    135. Y. Pennec, W. Auwärter, A. Schiffrin, A. Weber-Bargioni, A. Riemann and J. V. Barth, Nature Nanotechnology, 2007, 2, 99
    136. F. Klappenberger, D. Kühne, W. Krenner, I. Silanes, A. Arnau, F. J. García de Abajo, S. Klyatskaya, M. Ruben and J. V. Barth, Phys. Rev. Lett., 2011, 106, 026802
    137. M. Pivetta, G. E. Pacchioni, U. Schlickum, J. V. Barth and H. Brune, Phys. Rev. Lett., 2013, 110, 086102
    138. J. Zhang, A. Shchyrba, S. Nowakowska, E. Meyer, T. A. Jung and M. Muntwiler, Chem. Commun., 2014, 50, 12289
    139. N. Kepčija, T.-J. Huang, F. Klappenberger and J. V. Barth, The Journal of Chemical Physics, 2015, 142, 101931
    140. K. Müller, M. Enache and M. Stöhr, J. Phys.: Condens. Matter, 2016, 28, 153003
    141. B. N. Taber, C. F. Gervasi, J. M. Mills, D. A. Kislitsyn, E. R. Darzi, W. G. Crowley, R. Jasti and G. V. Nazin, J. Phys. Chem. Lett., 2016, 7, 3073
    142. M. Müller, N. Néel, S. Crampin and J. Kröger, Phys. Rev. Lett., 2016, 117, 136803
    143. M. Müller, N. Néel, S. Crampin and J. Kröger, Phys. Rev. B, 2017, 96, 205426
    144. M. Schmid, W. Hebenstreit, P. Varga and S. Crampin, Phys. Rev. Lett., 1996, 76, 2298
    145. M. H. Upton, T. Miller and T.-C. Chiang, Phys. Rev. B, 2005, 71, 033403
    146. J. H. Dil, J. W. Kim, T. Kampen, K. Horn and A. R. H. F. Ettema, Phys. Rev. B, 2006, 73, 161308
    147. F. Yndurain and M. P. Jigato, Phys. Rev. Lett., 2008, 100, 205501
    148. N. Miyata, K. Horikoshi, T. Hirahara, S. Hasegawa, C. M. Wei and I. Matsuda, Phys. Rev. B, 2008, 78, 245405
    149. M. Becker and R. Berndt, Phys. Rev. B, 2010, 81, 205438
    150. A. Bauer, A. Mühlig, D. Wegner and G. Kaindl, Phys. Rev. B, 2002, 65, 075421
    151. D. Wegner, A. Bauer and G. Kaindl, Phys. Rev. Lett., 2005, 94, 126804
    152. D. Wegner, A. Bauer, Y. M. Koroteev, G. Bihlmayer, E. V. Chulkov, P. M. Echenique and G. Kaindl, Phys. Rev. B, 2006, 73, 115403
    153. F. García-Moliner and J. Rubio, Journal of Physics C: Solid State Physics, 1969, 2, 1789
    154. J. E. Inglesfield, Journal of Physics C: Solid State Physics, 1981, 14, 3795
    155. J. E. Inglesfield, The Embedding Method for Electronic Structure, Bristol Institute of Physics, UK, 2015.
    156. K. K. Gomes, W. Mar, W. Ko, F. Guinea and H. C. Manoharan, Nature, 2012, 483, 306
    157. S. Fölsch, J. Martínez-Blanco, J. Yang, K. Kanisawa and S. C. Erwin, Nature Nanotechnology, 2014, 9, 505
    158. R. Drost, T. Ojanen, A. Harju and P. Liljeroth, Nature Physics, 2017, 13, 668
    159. M. R. Slot, T. S. Gardenier, P. H. Jacobse, G. C. P. van Miert, S. N. Kempkes, S. J. M. Zevenhuizen, C. M. Smith, D. Vanmaekelbergh and I. Swart, Nature Physics, 2017, 13, 672
    160. J. Girovsky, J. L. Lado, F. E. Kalff, E. Fahrenfort, L. J. J. M. Peters, J. Fernández-Rossier and A. F. Otte, SciPost Phys., 2017, 2, 020
    161. S. Paavilainen, M. Ropo, J. Nieminen, J. Akola and E. Räsänen, Nano Letters, 2016, 16, 3519
    162. S. N. Kempkes, M. R. Slot, S. E. Freeney, S. J. M. Zevenhuizen, D. Vanmaekelbergh, I. Swart and C. M. Smith, Nature Physics, 2019, 15, 127
    163. M. N. Huda, S. Kezilebieke, T. Ojanen, R. Drost and P. Liljeroth, npj Quantum Materials, 2020, 5, 17
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Information

Article Metrics

Article views(10573) PDF downloads(263) Citation(0)

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint