Citation: | Jörg Kröger, Nicolas Néel, Simon Crampin. Quantum confinement of electrons at metal surfaces[J]. Materials Lab, 2023, 2(3): 230006. doi: 10.54227/mlab.20230006 |
Scanning tunneling microscopy and spectroscopy experiments on surface-localized electron states confined to nanometer-scaled resonators are reviewed from the first observations to the recently discovered novel reflection mechanism of electron de Broglie waves. The focus of the presented work is on lateral confinement and on processes leading to finite decay rates of the confined states.
1. | R. E. Thomas, J. Appl. Phys., 1970, 41, 5330 |
2. | M. Milun, P. Pervan and D. P. Woodruff, Rep. Prog. Phys., 2002, 65, 99 |
3. | M. F. Crommie, C. P. Lutz and D. M. Eigler, Nature, 1993, 363, 524 |
4. | Y. Hasegawa and Ph. Avouris, Phys. Rev. Lett., 1993, 71, 1071 |
5. | M. F. Crommie, C. P. Lutz and D. M. Eigler, Science, 1993, 262, 218 |
6. | S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, Science, 2001, 294, 1488 |
7. | G. Burkard, H.-A. Engel and D. Loss, Spintronics, quantum computing, and quantum communication in quantum dots, in Fundamentals of Quantum Information: Quantum Computation, Communication, Decoherence and All That, Springer, Germany, 2002. |
8. | G. Konstantatos, Colloidal quantum dot optoelectronics and photovoltaics, Cambridge University Press, UK, 2013. |
9. | S. Nakamura, Rev. Mod. Phys., 2015, 87, 1139 |
10. | P. V. Kamat, J. Phys. Chem. Lett., 2013, 4, 908 |
11. | J. Zhao, M. A. Holmes and F. E. Osterloh, ACS Nano, 2013, 7, 4316 |
12. | J. J. Paggel, T. Miller and T.-C. Chiang, Science, 1999, 283, 1709 |
13. | X. Ma, P. Jiang, Y. Qi, J. Jia, Y. Yang, W. Duan, W.-X. Li, X. Bao, S. B. Zhang and Q.-K. Xue, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 9204 |
14. | L. Aballe, A. Barinov, A. Locatelli, S. Heun and M. Kiskinova, Phys. Rev. Lett., 2004, 93, 196103 |
15. | Y. Jia, M. Özer, H. Weitering and Z. Zhang, Nanophenomena at surfaces: Fundamentals of exotic condensed matter properties, Springer, Germany, 2011. |
16. | J. E. Ortega, F. J. Himpsel, G. J. Mankey and R. F. Willis, Phys. Rev. B, 1993, 47, 1540 |
17. | A. C. Ehrlich, Phys. Rev. Lett., 1993, 71, 2300 |
18. | C. Carbone, E. Vescovo, O. Rader, W. Gudat and W. Eberhardt, Phys. Rev. Lett., 1993, 71, 2805 |
19. | D. Li, J. Pearson, J. E. Mattson, S. D. Bader and P. D. Johnson, Phys. Rev. B, 1995, 51, 7195 |
20. | C. Hwang and F. J. Himpsel, Phys. Rev. B, 1995, 52, 15368 |
21. | Z. T. Diao, S. Tsunashima, M. Jimbo and S. Iwata, Journal of Physics: Condensed Matter, 1996, 8, 4959 |
22. | A. F. Santander-Syro, F. Fortuna, C. Bareille, T. C. Rodel, G. Landolt, N. C. Plumb, J. H. Dil and M. Radovic, Nat. Mater., 2014, 13, 1085 |
23. | C. M. Wei and M. Y. Chou, Phys. Rev. B, 2002, 66, 233408 |
24. | D. Eom, S. Qin, M.-Y. Chou and C. K. Shih, Phys. Rev. Lett., 2006, 96, 027005 |
25. | Y. Guo, Y.-F. Zhang, X.-Y. Bao, T.-Z. Han, Z. Tang, L.-X. Zhang, W.-G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J.-F. Jia, Z.-X. Zhao and Q.-K. Xue, Science, 2004, 306, 1915 |
26. | S. Qin, J. Kim, Q. Niu and C.-K. Shih, Science, 2009, 324, 1314 |
27. | T. Uchihashi, Superconductor Science and Technology, 2017, 30, 013002 |
28. | T. Uchihashi, Japanese Journal of Applied Physics, 2016, 55, 1102A5 |
29. | A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J. G. Hou and Q. Zhu, Science, 2005, 309, 1542 |
30. | T. Uchihashi, J. Zhang, J. Kröger and R. Berndt, Phys. Rev. B, 2008, 78, 033402 |
31. | P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann and U. Höfer, Surface Science Reports, 2004, 52, 219 |
32. | M. C. Barr, M. P. Zaletel and E. J. Heller, Nano Letters, 2010, 10, 3253 |
33. | J. Bardeen, Phys. Rev. Lett., 1961, 6, 57 |
34. | J. G. Simmons, Journal of Applied Physics, 1963, 34, 1793 |
35. | J. G. Simmons, Journal of Applied Physics, 1963, 34, 2581 |
36. | G. Wentzel, Zeitschrift für Physik, 1926, 38, 518 |
37. | H. A. Kramers, Zeitschrift für Physik, 1926, 39, 828 |
38. | L. Brillouin, Comptes rendus de l’Académie des Sciences, 1926, 183, 24 |
39. | J. Tersoff and D. R. Hamann, Phys. Rev. Lett., 1983, 50, 1998 |
40. | J. Tersoff and D. R. Hamann, Phys. Rev. B, 1985, 31, 805 |
41. | M. L. Maede, Lock-in amplifiers: principles and applications, Peter Peregrinus Ltd., UK, 1983. |
42. | J. A. Stroscio, R. M. Feenstra and A. P. Fein, Phys. Rev. Lett., 1986, 57, 2579 |
43. | J. Li, W.-D. Schneider and R. Berndt, Phys. Rev. B, 1997, 56, 7656 |
44. | B. Koslowski, C. Dietrich, A. Tschetschetkin and P. Ziemann, Phys. Rev. B, 2007, 75, 035421 |
45. | C. Wagner, R. Franke and T. Fritz, Phys. Rev. B, 2007, 75, 235432 |
46. | M. Passoni, F. Donati, A. Li Bassi, C. S. Casari and C. E. Bottani, Phys. Rev. B, 2009, 79, 045404 |
47. | M. Ziegler, N. Néel, A. Sperl, J. Kröger and R. Berndt, Phys. Rev. B, 2009, 80, 125402 |
48. | B. Koslowski, H. Pfeifer and P. Ziemann, Phys. Rev. B, 2009, 80, 165419 |
49. | G. Reecht, B. W. Heinrich, H. Bulou, F. Scheurer, L. Limot and G. Schull, New Journal of Physics, 2017, 19, 113033 |
50. | R. Rejali, L. Farinacci and S. Otte, Phys. Rev. B, 2023, 107, 035406 |
51. | W. Shockley, Phys. Rev., 1939, 56, 317 |
52. | P. O. Gartland and B. J. Slagsvold, Phys. Rev. B, 1975, 12, 4047 |
53. | S. D. Kevan, Phys. Rev. Lett., 1983, 50, 526 |
54. | F. Reinert, G. Nicolay, S. Schmidt, D. Ehm and S. Hüfner, Phys. Rev. B, 2001, 63, 115415 |
55. | L. Bürgi, O. Jeandupeux, H. Brune and K. Kern, Phys. Rev. Lett., 1999, 82, 4516 |
56. | S. Crampin, J. Kröger, H. Jensen and R. Berndt, Phys. Rev. Lett., 2005, 95, 029701 |
57. | O. Jeandupeux, L. Bürgi, A. Hirstein, H. Brune and K. Kern, Phys. Rev. B, 1999, 59, 15926 |
58. | J. I. Pascual, Z. Song, J. J. Jackiw, K. Horn and H.-P. Rust, Phys. Rev. B, 2001, 63, 241103 |
59. | L. Petersen and P. Hedegård, Surface Science, 2000, 459, 49 |
60. | H. Hirayama, Y. Aoki and C. Kato, Phys. Rev. Lett., 2011, 107, 027204 |
61. | R. S. Becker, J. A. Golovchenko and B. S. Swartzentruber, Nature, 1987, 325, 419 |
62. | D. M. Eigler and E. K. Schweizer, Nature, 1990, 344, 524 |
63. | H. C. Manoharan, C. P. Lutz and D. M. Eigler, Nature, 2000, 403, 512 |
64. | J. Kondo, Progress of Theoretical Physics, 1964, 32, 37 |
65. | J. Li, W.-D. Schneider, R. Berndt and B. Delley, Phys. Rev. Lett., 1998, 80, 2893 |
66. | V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie and N. S. Wingreen, Science, 1998, 280, 567 |
67. | G. A. Fiete, J. S. Hersch, E. J. Heller, H. C. Manoharan, C. P. Lutz and D. M. Eigler, Phys. Rev. Lett., 2001, 86, 2392 |
68. | G. A. Fiete and E. J. Heller, Rev. Mod. Phys., 2003, 75, 933 |
69. | V. S. Stepanyuk, L. Niebergall, W. Hergert and P. Bruno, Phys. Rev. Lett., 2005, 94, 187201 |
70. | H. Oka, O. O. Brovko, M. Corbetta, V. S. Stepanyuk, D. Sander and J. Kirschner, Rev. Mod. Phys., 2014, 86, 1127 |
71. | A. A. Khajetoorians, J. Wiebe, B. Chilian, S. Lounis, S. Blügel and R. Wiesendanger, Nature Physics, 2012, 8, 497 |
72. | J. Kliewer, R. Berndt and S. Crampin, Phys. Rev. Lett., 2000, 85, 4936 |
73. | J. Kliewer, R. Berndt and S. Crampin, New Journal of Physics, 2001, 3, 22 |
74. | K.-F. Braun and K.-H. Rieder, Phys. Rev. Lett., 2002, 88, 096801 |
75. | N. Nilius, T. M. Wallis and W. Ho, Science, 2002, 297, 1853 |
76. | T. M. Wallis, N. Nilius and W. Ho, Phys. Rev. Lett., 2002, 89, 236802 |
77. | S. Fölsch, P. Hyldgaard, R. Koch and K. H. Ploog, Phys. Rev. Lett., 2004, 92, 056803 |
78. | A. Sperl, J. Kröger, N. Néel, H. Jensen, R. Berndt, A. Franke and E. Pehlke, Phys. Rev. B, 2008, 77, 085422 |
79. | A. Sperl, J. Kröger and R. Berndt, physica status solidi (b), 2010, 247, 1077 |
80. | V. D. Pham, K. Kanisawa and S. Fölsch, Phys. Rev. Lett., 2019, 123, 066801 |
81. | L. R. O. F.R.S., The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1910, 20, 1001 |
82. | G. Mie, Annalen der Physik, 1908, 330, 377 |
83. | P. Debye, Annalen der Physik, 1909, 335, 57 |
84. | A. N. Oraevsky, Quantum Electronics, 2002, 32, 377 |
85. | A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria and G. Righini, Laser & Photonics Reviews, 2010, 4, 457 |
86. | C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco and A. Y. Cho, Science, 1998, 280, 1556 |
87. | Y. Baryshnikov, P. Heider, W. Parz and V. Zharnitsky, Phys. Rev. Lett., 2004, 93, 133902 |
88. | K. G. Budden, H. G. Martin and N. F. Mott, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1962, 265, 554 |
89. | P. L. Stanwix, M. E. Tobar, P. Wolf, M. Susli, C. R. Locke, E. N. Ivanov, J. Winterflood and F. van Kann, Phys. Rev. Lett., 2005, 95, 040404 |
90. | R. Mendis and D. M. Mittleman, Applied Physics Letters, 2010, 97, 031106 |
91. | F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Höfling, L. Worschech and A. Forchel, Applied Physics Letters, 2010, 97, 101108 |
92. | J. K. Hyun, M. Couillard, P. Rajendran, C. M. Liddell and D. A. Muller, Applied Physics Letters, 2008, 93, 243106 |
93. | C. Liu and J. A. Golovchenko, Phys. Rev. Lett., 1997, 79, 788 |
94. | V. V. Nesvizhevsky, A. Y. Voronin, R. Cubitt and K. V. Protasov, Nature Physics, 2010, 6, 114 |
95. | O. Dragún and H. Überall, Physics Letters B, 1980, 94, 24 |
96. | B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang and K. Vahala, Nature, 2009, 457, 455 |
97. | L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu and X. Shen, Phys. Rev. Lett., 2008, 100, 156403 |
98. | G. Reecht, H. Bulou, F. Scheurer, V. Speisser, B. Carri`ere, F. Mathevet and G. Schull, Phys. Rev. Lett., 2013, 110, 056802 |
99. | Y. Zhao, J. Wyrick, F. D. Natterer, J. F. Rodriguez-Nieva, C. Lewandowski, K. Watanabe, T. Taniguchi, L. S. Levitov, N. B. Zhitenev and J. A. Stroscio, Science, 2015, 348, 672 |
100. | P. Avouris and I.-W. Lyo, Science, 1994, 264, 942 |
101. | J. Li, W. D. Schneider, R. Berndt and S. Crampin, Phys. Rev. Lett., 1998, 80, 3332 |
102. | I. Barke and H. Hövel, Phys. Rev. Lett., 2003, 90, 166801 |
103. | L. Bürgi, O. Jeandupeux, A. Hirstein, H. Brune and K. Kern, Phys. Rev. Lett., 1998, 81, 5370 |
104. | H. Jensen, J. Kröger, R. Berndt and S. Crampin, Phys. Rev. B, 2005, 71, 155417 |
105. | J. Kröger, L. Limot, H. Jensen, R. Berndt, S. Crampin and E. Pehlke, Progress in Surface Science, 2005, 80, 26 |
106. | S. Crampin, H. Jensen, J. Kröger, L. Limot and R. Berndt, Phys. Rev. B, 2005, 72, 035443 |
107. | J. Kröger, M. Becker, H. Jensen, T. von Hofe, N. Néel, L. Limot, R. Berndt, S. Crampin, E. Pehlke, C. Corriol, V. Silkin, D. Sánchez-Portal, A. Arnau, E. Chulkov and P. Echenique, Progress in Surface Science, 2007, 82, 293 |
108. | L. Niebergall, G. Rodary, H. F. Ding, D. Sander, V. S. Stepanyuk, P. Bruno and J. Kirschner, Phys. Rev. B, 2006, 74, 195436 |
109. | A. Eiguren, B. Hellsing, F. Reinert, G. Nicolay, E. V. Chulkov, V. M. Silkin, S. Hüfner and P. M. Echenique, Phys. Rev. Lett., 2002, 88, 066805 |
110. | L. Vitali, P. Wahl, M. Schneider, K. Kern, V. Silkin, E. Chulkov and P. Echenique, Surface Science, 2003, 523, L47 |
111. | C. Tournier-Colletta, B. Kierren, Y. Fagot-Revurat and D. Malterre, Phys. Rev. Lett., 2010, 104, 016802 |
112. | S. Grothe, S. Johnston, S. Chi, P. Dosanjh, S. A. Burke and Y. Pennec, Phys. Rev. Lett., 2013, 111, 246804 |
113. | O. Klein, Zeitschrift für Physik, 1929, 53, 157 |
114. | A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys., 2009, 81, 109 |
115. | M. I. Katsnelson, K. S. Novoselov and A. K. Geim, Nature Physics, 2006, 2, 620 |
116. | C. Gutiérrez, L. Brown, C.-J. Kim, J. Park and A. N. Pasupathy, Nature Physics, 2016, 12, 1069 |
117. | J. Lee, D. Wong, J. Velasco Jr, J. F. Rodriguez-Nieva, S. Kahn, H.-Z. Tsai, T. Taniguchi, K. Watanabe, A. Zettl, F. Wang, L. S. Levitov and M. F. Crommie, Nature Physics, 2016, 12, 1032 |
118. | Z. Ge, F. Joucken, E. Quezada, D. R. da Costa, J. Davenport, B. Giraldo, T. Taniguchi, K. Watanabe, N. P. Kobayashi, T. Low and J. J. Velasco, Nano Letters, 2020, 20, 8682 |
119. | S.-Y. Li and L. He, Frontiers of Physics, 2021, 17, 33201 |
120. | S.-h. Phark, J. Borme, A. L. Vanegas, M. Corbetta, D. Sander and J. Kirschner, ACS Nano, 2011, 5, 8162 |
121. | S. K. Hämäläinen, Z. Sun, M. P. Boneschanscher, A. Uppstu, M. Ijäs, A. Harju, D. Vanmaekelbergh and P. Liljeroth, Phys. Rev. Lett., 2011, 107, 236803 |
122. | S. J. Altenburg, J. Kröger, T. O. Wehling, B. Sachs, A. I. Lichtenstein and R. Berndt, Phys. Rev. Lett., 2012, 108, 206805 |
123. | W. Jolie, F. Craes, M. Petrović, N. Atodiresei, V. Caciuc, S. Blügel, M. Kralj, T. Michely and C. Busse, Phys. Rev. B, 2014, 89, 155435 |
124. | W. Jolie, F. Craes and C. Busse, Phys. Rev. B, 2015, 91, 115419 |
125. | H. W. Kim, S. Takemoto, E. Minamitani, T. Okada, T. Takami, K. Motobayashi, M. Trenary, M. Kawai, N. Kobayashi and Y. Kim, The Journal of Physical Chemistry C, 2016, 120, 345 |
126. | F. Craes, S. Runte, J. Klinkhammer, M. Kralj, T. Michely and C. Busse, Phys. Rev. Lett., 2013, 111, 056804 |
127. | A. Mugarza, A. Mascaraque, V. Pérez-Dieste, V. Repain, S. Rousset, F. J. García de Abajo and J. E. Ortega, Phys. Rev. Lett., 2001, 87, 107601 |
128. | M. Hansmann, J. I. Pascual, G. Ceballos, H.-P. Rust and K. Horn, Phys. Rev. B, 2003, 67, 121409 |
129. | F. J. Himpsel, J. E. Ortega, G. J. Mankey and R. F. Willis, Advances in Physics, 1998, 47, 511 |
130. | S. Shiraki, H. Fujisawa, M. Nantoh and M. Kawai, Phys. Rev. Lett., 2004, 92, 096102 |
131. | F. Baumberger, M. Hengsberger, M. Muntwiler, M. Shi, J. Krempasky, L. Patthey, J. Osterwalder and T. Greber, Phys. Rev. Lett., 2004, 92, 196805 |
132. | T. Uchihashi, K. Kobayashi and T. Nakayama, Phys. Rev. B, 2010, 82, 113413 |
133. | T. Uchihashi, P. Mishra, K. Kobayashi and T. Nakayama, Phys. Rev. B, 2011, 84, 195466 |
134. | I. Piquero-Zulaica, J. Lobo-Checa, Z. M. A. El-Fattah, J. E. Ortega, F. Klappenberger, W. Auwärter and J. V. Barth, Rev. Mod. Phys., 2022, 94, 045008 |
135. | Y. Pennec, W. Auwärter, A. Schiffrin, A. Weber-Bargioni, A. Riemann and J. V. Barth, Nature Nanotechnology, 2007, 2, 99 |
136. | F. Klappenberger, D. Kühne, W. Krenner, I. Silanes, A. Arnau, F. J. García de Abajo, S. Klyatskaya, M. Ruben and J. V. Barth, Phys. Rev. Lett., 2011, 106, 026802 |
137. | M. Pivetta, G. E. Pacchioni, U. Schlickum, J. V. Barth and H. Brune, Phys. Rev. Lett., 2013, 110, 086102 |
138. | J. Zhang, A. Shchyrba, S. Nowakowska, E. Meyer, T. A. Jung and M. Muntwiler, Chem. Commun., 2014, 50, 12289 |
139. | N. Kepčija, T.-J. Huang, F. Klappenberger and J. V. Barth, The Journal of Chemical Physics, 2015, 142, 101931 |
140. | K. Müller, M. Enache and M. Stöhr, J. Phys.: Condens. Matter, 2016, 28, 153003 |
141. | B. N. Taber, C. F. Gervasi, J. M. Mills, D. A. Kislitsyn, E. R. Darzi, W. G. Crowley, R. Jasti and G. V. Nazin, J. Phys. Chem. Lett., 2016, 7, 3073 |
142. | M. Müller, N. Néel, S. Crampin and J. Kröger, Phys. Rev. Lett., 2016, 117, 136803 |
143. | M. Müller, N. Néel, S. Crampin and J. Kröger, Phys. Rev. B, 2017, 96, 205426 |
144. | M. Schmid, W. Hebenstreit, P. Varga and S. Crampin, Phys. Rev. Lett., 1996, 76, 2298 |
145. | M. H. Upton, T. Miller and T.-C. Chiang, Phys. Rev. B, 2005, 71, 033403 |
146. | J. H. Dil, J. W. Kim, T. Kampen, K. Horn and A. R. H. F. Ettema, Phys. Rev. B, 2006, 73, 161308 |
147. | F. Yndurain and M. P. Jigato, Phys. Rev. Lett., 2008, 100, 205501 |
148. | N. Miyata, K. Horikoshi, T. Hirahara, S. Hasegawa, C. M. Wei and I. Matsuda, Phys. Rev. B, 2008, 78, 245405 |
149. | M. Becker and R. Berndt, Phys. Rev. B, 2010, 81, 205438 |
150. | A. Bauer, A. Mühlig, D. Wegner and G. Kaindl, Phys. Rev. B, 2002, 65, 075421 |
151. | D. Wegner, A. Bauer and G. Kaindl, Phys. Rev. Lett., 2005, 94, 126804 |
152. | D. Wegner, A. Bauer, Y. M. Koroteev, G. Bihlmayer, E. V. Chulkov, P. M. Echenique and G. Kaindl, Phys. Rev. B, 2006, 73, 115403 |
153. | F. García-Moliner and J. Rubio, Journal of Physics C: Solid State Physics, 1969, 2, 1789 |
154. | J. E. Inglesfield, Journal of Physics C: Solid State Physics, 1981, 14, 3795 |
155. | J. E. Inglesfield, The Embedding Method for Electronic Structure, Bristol Institute of Physics, UK, 2015. |
156. | K. K. Gomes, W. Mar, W. Ko, F. Guinea and H. C. Manoharan, Nature, 2012, 483, 306 |
157. | S. Fölsch, J. Martínez-Blanco, J. Yang, K. Kanisawa and S. C. Erwin, Nature Nanotechnology, 2014, 9, 505 |
158. | R. Drost, T. Ojanen, A. Harju and P. Liljeroth, Nature Physics, 2017, 13, 668 |
159. | M. R. Slot, T. S. Gardenier, P. H. Jacobse, G. C. P. van Miert, S. N. Kempkes, S. J. M. Zevenhuizen, C. M. Smith, D. Vanmaekelbergh and I. Swart, Nature Physics, 2017, 13, 672 |
160. | J. Girovsky, J. L. Lado, F. E. Kalff, E. Fahrenfort, L. J. J. M. Peters, J. Fernández-Rossier and A. F. Otte, SciPost Phys., 2017, 2, 020 |
161. | S. Paavilainen, M. Ropo, J. Nieminen, J. Akola and E. Räsänen, Nano Letters, 2016, 16, 3519 |
162. | S. N. Kempkes, M. R. Slot, S. E. Freeney, S. J. M. Zevenhuizen, D. Vanmaekelbergh, I. Swart and C. M. Smith, Nature Physics, 2019, 15, 127 |
163. | M. N. Huda, S. Kezilebieke, T. Ojanen, R. Drost and P. Liljeroth, npj Quantum Materials, 2020, 5, 17 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Confinement of Shockley surface state electrons of Ag(111) to a hexagonal and triangular vacancy resonator. a Pseudo-three-dimensional presentation of an STM image of an atomically resolved hexagonal monatomically deep vacancy island on Ag(111) (bias voltage:
Lifetime analysis of confined Shockley surface electron states at Ag(111). a Calculated level widths for a circular Ag vacancy island using
Lateral confinement of quantum well states to a thin Pb layer above buried nanocavities. a Illustration of the preparation of buried resonantors at Pb(111) by Ar
Simulation of lateral QWS confinement. a Model geometry and partitioning of space used in the calculations. The cylindrical cavity with radius