Citation: | Yi-Xin Zhang, Zhen-Hua Ge. The stability of copper sulfides thermoelectric materials[J]. Materials Lab, 2024, 3(1): 230017. doi: 10.54227/mlab.20230017 |
The stability of thermoelectric materials is critical in determining their suitability for commercial device applications. Copper sulfides are superionic conductors with highly disordered Cu ions, which results in exceptional thermoelectric properties at high temperature. However, this feature also causes unbalanced Cu ions concentration as well as the poor service stability under external fields. Researchers are focusing on enhancing the service stability of copper-based superionic conductors. This perspective reviews the mechanisms of Cu ions migration, metal deposition, and materials degradation of copper sulfides. The importance of appropriately inhibiting long-range migration of Cu ions is emphasized. Based on an analysis of the effects of multiple scaled ion-blocking barriers on ion, carrier and phonon transportation, some rational approaches for improving service stability of copper sulfides while maintaining their thermoelectric performance are proposed, which would increase the possibility of utilizing copper sulfides in thermoelectric device applications.
1. | J. Li, Y. Pan, C. Wu, F. Sun and T. Wei, Sci. China Technol. Sci., 2017, 60, 1347 |
2. | Y. Xiao and L.-D. Zhao, Science, 2020, 367, 1196 |
3. | B. Qin and L.-D. Zhao, Mat. Lab, 2022, 1, 220004 |
4. | T.-R. Wei, M. Jin, Y. Wang, H. Chen, Z. Gao, K. Zhao, P. Qiu, Z. Shan, J. Jiang, R. Li, L. Chen, J. He and X. Shi, Science, 2020, 369, 542 |
5. | Y. Xiao, Mat. Lab, 2022, 1, 220025 |
6. | X. Zhang and L.-D. Zhao, J. Materiomics, 2015, 1, 92 |
7. | L. Su, D. Wang, S. Wang, B. Qin, Y. Wang, Y. Qin, Y. Jin, C. Chang and L.-D. Zhao, Science, 2022, 375, 1385 |
8. | W. He, D. Wang, H. Wu, Y. Xiao, Y. Zhang, D. He, Y. Feng, Y.-J. Hao, J.-F. Dong, R. Chetty, L. Hao, D. Chen, J. Qin, Q. Yang, X. Li, J.-M. Song, Y. Zhu, W. Xu, C. Niu, X. Li, G. Wang, C. Liu, M. Ohta, S. J. Pennycook, J. He, J.-F. Li and L.-D. Zhao, Science, 2019, 365, 1418 |
9. | P. Qiu, T. Mao, Z. Huang, X. Xia, J. Liao, M. T. Agne, M. Gu, Q. Zhang, D. Ren, S. Bai, X. Shi, G. J. Snyder and L. Chen, Joule, 2019, 3, 1 |
10. | D. R. Brown, T. Day, T. Caillat and G. J. Snyder, J. Electron. Mater., 2013, 42, 2014 |
11. | Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen and G. J. Snyder, Adv. Mater., 2014, 26, 3974 |
12. | Y. Liu, M. Liu, M. T. Swihart, J. Am. Chem. Soc., 2017, 139, 18598 |
13. | Y. Shang, X. Li, S. Huang, S. Chen, Z. Yang, L. Guo, H. Y. Yang, Matter, 2020, 2, 1 |
14. | Z.-H. Ge, B.-P. Zhang, Y.-X. Chen, Z.-X. Yu, Y. Liu and J.-F. Li, Chem. Commun., 2011, 47, 12697 |
15. | J. Cui, R. Jiang, W. Lu, S. Xu, L. Wang, Small, 2017, 13, 1602235 |
16. | P. Lukashev, W. R. L. Lambrecht, T. Kotani and M. V. Schilfgaarde, Phys. Rev. B, 2007, 76, 195202 |
17. | Q. Xu, B. Huang, Y.-F. Zhao, Y.-f. Yan and R. Noufi, Appl. Phys. Lett., 2012, 100, 061906 |
18. | H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day and G. J. Snyder, Nat. Mater., 2012, 11, 422 |
19. | Y.-X. Sun, L.-l. Xi, J. Yang, L.-H. Wu, X. Shi, L.-D. Chen, J. Snyder, J.-H. Yang and W.-Q. Zhang, J. Mater. Chem. A, 2017, 5, 5098 |
20. | L. Zhao, X. Wang, F. Y. Fei, J. Wang, Z. Cheng, S. Dou, J. Wang and G. J. Snyderc, J. Mater. Chem. A, 2015, 3, 9432 |
21. | Q.-L. Meng, S. Kong, Z. Huang, Y. Zhu, H.-C. Liu, X. Lu, P. Jiang and X. Bao, J. Mater. Chem. A, 2016, 4, 12624 |
22. | Z.-H. Ge, X. Liu, D. Feng, J. Lin and J. He, Adv. Energy Mater., 2016, 6, 1600607 |
23. | D.-D. Liang, Z.-H. Ge, H.-Z. Li, B.-P. Zhang and F. Li, J. Alloys Compd., 2017, 708, 169 |
24. | K. Zhao, C. Zhu, P. Qiu, A. B. Blichfeld, E. Eikeland, D. Ren, B. B. Iversen, F. Xu, X. Shi and L. Chen, Nano Energy, 2017, 42, 43 |
25. | H. Tang, F.-H. Sun, J.-F. Dong, Asfandiyar, H.-L. Zhuang, Y. Pan and J.-F. Li, Nano Energy, 2018, 49, 267 |
26. | Z.-H. Ge, Y.-X. Zhang, D. Song, X. Chong, P. Qin, F. Zheng, J. Feng and L.-D. Zhao, J. Mater. Chem. A, 2018, 6, 14440 |
27. | Y. Yao, B.-P. Zhang, J. Pei, Q. Sun, G. Nie, W.-Z. Zhang, Z.-T. Zhuo and W. Zhou, ACS Appl. Mater. Inter., 2018, 10, 32201 |
28. | P. Qin, Z.-H. Ge, Y.-X. Chen, X. Chong, J. Feng and J. He, Nanotechnology, 2018, 29, 345402 |
29. | X. Liang, D. Jin and F. Dai, Adv. Electron. Mater., 2019, 5, 1900486 |
30. | Z.-H. Ge, X. Chong, D. Feng, Y.-X. Zhang, Y. Qiu, L. Xie, P.-W. Guan, J. Feng and J. He, Mater. Today Phys., 2019, 8, 71 |
31. | A. Mikuła, P. Nieroda, K. Mars, J. Dąbrowa and A. Koleżyński, Solid State Ionics, 2020, 350, 115322 |
32. | C. Tang, D. Liang, H. Li, K. Luo and B. Zhang, J. Adv. Ceram., 2019, 8, 209 |
33. | T. Mao, P. Qiu, J. Liu, X. Du, P. Hu, K. Zhao, D. Ren, X. Shi and L. Chen, Phys. Chem. Chem. Phys., 2020, 22, 7374 |
34. | X. Chen, H. Zhang, Y. Zhao, W.-D. Liu, W. Dai, T. Wu, X. Lu, C. Wu, W. Luo, Y. Fan, L. Wang, W. Jiang, Z.-G. Chen and J. Yang, ACS Appl. Mater. Inter., 2019, 11, 22457 |
35. | P. Nieroda, J. Leszczyński, A. Mikuła, K. Mars, M. J. Kruszewskic and A. Koleżyński, Ceram. Int., 2020, 46, 25460 |
36. | F. Shen, Y. Zheng, L. Miao, C. Liu, J. Gao, X. Wang, P. Liu, K. Yoshida and H. Cai, ACS Appl. Mater. Inter., 2020, 12, 8385 |
37. | T. Mao, P. Qiu, P. Hu, X. Du, K. Zhao, T.-R. Wei, J. Xiao, X. Shi and L. Chen, Adv. Sci., 2020, 7, 1901598 |
38. | S. Zhao, H. Chen, X. Zhao, J. Luo, Z. Tang, G. Zeng, K. Yang, Z. Wei, W. Wen, X. Chen and Y. Sun, Mater. Today Phys., 2020, 15, 100271 |
39. | R. Zhang, J. Pei, Z.-J. Han, Y. Wu, Z. Zhao and B.-P. Zhang, J. Adv. Ceram., 2020, 9, 535 |
40. | Y.-H. Zhao, R. Zhang, B.-P. Zhang, Y. Yin, M.-J. Wang and D.-D. Liang, Acta Phys. Sin., 2021, 70, 128401 |
41. | M. Li, Y. Liu, Y. Zhang, X. Han, T. Zhang, Y. Zuo, C. Xie, K. Xiao, J. Arbiol, J. Llorca, M. Ibáñez, J. Liu and A. Cabot, ACS Nano, 2021, 15, 4967 |
42. | Y.-X. Zhang, Y.-K. Zhu, J. Feng and Z.-H. Ge, J. Alloys Compd., 2022, 892, 162035 |
43. | Z. Yue, W. Zhou, X. Ji, Y. Wang and F. Guo, Chem. Eng. J, 2022, 449, 137748 |
44. | M. Yang, X. Liu, B. Zhang, Y. Chen, H. Wang, J. Yu, G. Wang, J. Xu, X. Zhou and G. Han, ACS Appl. Mater. Inter., 2021, 13, 39541 |
45. | Y. Zhang, C. Xing, Y. Liu, M. C. Spadaro, X. Wang, M. Li, K. Xiao, T. Zhang, P. Guardia, K. H. Lim, A. O. Moghaddam, J. Llorca, J. Arbiol, M. Ibanez and A. Cabot, Nano Energy, 2021, 85, 105991 |
46. | S. Xiang, Y. Liang, X. Han, P. Yan and X. Zhang, Inorg. Chem., 2022, 61, 14973 |
47. | Y.-X. Zhang, T.-Y. Yang, Z.-Y. Wang, J. Feng and Z.-H. Ge, Mater. Today Phys., 2022, 27, 100808 |
48. | Y.-X. Zhang, J. Feng and Z.-H. Ge, Chem. Eng. J., 2022, 428, 131153 |
49. | Y.-X. Zhang, Q. Lou, Z.-H. Ge, S.-W. Gu, J.-X. Yang, J. Guo, Y.-K. Zhu, Y. Zhou, X.-H. Yu, J. Feng and J. He, Acta Mater., 2022, 233, 117972 |
50. | Y. Yu, D. Yang, J. Li, M. Zhang, H. Luo, Q. Liang, Hengqiang Ye, Q. Zhang, X. Tang and J. Wu, Adv. Func. Mater., 2022, 32, 2107284 |
51. | X. Li, Y. Lou, K. Jin, L. Fu, P. Xu, Z. Shi, T. Feng and B. Xu, Angew. Chem. Int. Ed., 2022, 61, e202212885 |
52. | S. Xiang, Y. Liang and X. Zhang, J. Eur. Ceram. Soc., 2022, 42, 7468 |
53. | W. Zhou, H. Li, Z. Shan, R. Zhang, S. Lu, J. Pei, Z. Ge, M. Zhou, Y. Wang and B. Zhang, Sci. China Mater., 2023, 66, 2051 |
54. | P. Qiu, M. T. Agne, Y. Liu, Y. Zhu, H. Chen, T. Mao, J. Yang, W. Zhang, S. M. Haile, W. G. Zeier, J. Janek, C. Uher, X. Shi, L. Chen and G. J. Snyder, Nat. Commun., 2018, 9, 2910 |
55. | S.-Y. Miyatani, Y. Suzuki, J. Phys. Soc. Jpn., 1953, 8, 680 |
56. | G. Dennler, R. Chmielowski, S. Jacob, F. Capet, P. Roussel, S. Zastrow, K. Nielsch, I. Opahle and G. K. H. Madsen, Adv. Energy Mater., 2014, 4, 1301581 |
57. | P. Qin, X. Qian, Z.-H. Ge, L. Zheng, J. Feng and L.-D. Zhao, Inorg. Chem. Front., 2017, 4, 1192 |
58. | W.-D. Liu, X.-L. Shi, H. Gao, R. Moshwan, S.-D. Xu, Y. Wang, L. Yang, Z.-G. Chen and J. Zou, J. Mater. Chem. C, 2019, 7, 5366 |
59. | Y. He, P. Lu, X. Shi, F. Xu, T. Zhang, G. J. Snyder, C. Uher and L. Chen, Adv. Mater., 2015, 27, 3639 |
60. | P. Nieroda, M. J. Kruszewski, J. Leszczynski, K. Mars and A. Kolezynski, Ceram. Int., 2023, 49, 9681 |
61. | A. A. Olvera, N. A. Moroz, P. Sahoo, P. Ren, T. P. Bailey, A. A. Page, C. Uher and P. F. P. Poudeu, Energ. Environ. Sci., 2017, 10, 1668 |
62. | S. Wu, J. JIANG, Y. Liang, P. Yang, Y. Niu, Y. Chen, J. Xia and C. Wang, J. Electron. Mater., 2017, 46, 2432 |
63. | Y. Dou, Z. Liu, Z. Wu, Y. Liu, J. Li, C. Leng, D. Fang, G. Liang, J. Xiao, W. Li, X. Wei, F. Huang, Y.-B. Cheng and J. Zhong, Nano Energy, 2020, 71, 104567 |
64. | Z. Zhao, D.-D. Liang, J. Pei, J.-L. Shi, Y. Wu, R. Zhang and B.-P. Zhang, J. Materiomics, 2021, 7, 556 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Dimensionless figure of merit ZT for binary copper sulfide-based thermoelectric materials as a function of temperature and year. The data were taken from[11, 14, 20-53].
Schematic of a steady state of copper sulfides without ion directional long-range migration (and without metal deposition) and b continuous metal deposition (or other decomposition), if the local Cu ion concentration reaches a critical level for the materials[54]. Copyright 2018, Springer Nature. c Critical voltage (Vc) and ZT at 750 K as a function of Cu vacancy content (δ) for Cu2-δS (0≤δ≤0.2), Cu1.8FexS (x=0.024, 0.036, 0.048 and 0.064), Cu1.9FexS (x=
Multiscale ion-blocking barriers in the copper sulfides. Sketch map of Cu ion diffusion in the framework of copper sulfides at high temperature when a atomic-scale defects (immobile ions or Cu vacancies), b nanoprecipitates, c interfacial scale barriers and d macroscopic partition ion-blocking barriers are introduced. e Schematic of improving stability of copper sulfides by simultaneously introducing multiscale ion-blocking barriers.