Citation: | Fu-Hua Sun, Jun Tan, Hezhang Li, Qin Li, Jun Pei, Xinyu Wang. Exploring electrical property improvement for thermoelectric sulfides[J]. Materials Lab, 2024, 3(1): 202300. doi: 10.54227/mlab.20230012 |
Metal sulfides have been the subject of extensive research as a promising candidate in the study of thermoelectric energy transfer due to their eco-friendly abundance and similarities in chemical and structural properties with tellurides and selenides. Their intrinsically low thermal conductivity decouples the intercorrelated thermoelectric parameters that comprise the figure merit of
1. | Q. Yan, M. G. Kanatzidis, Nat. Mater., 2022, 21, 503 |
2. | J. Pei, B. Cai, H. L. Zhuang, J. F. Li, Nat. Sci. Rev., 2020, 7, 1856 |
3. | H. Wang, R. Gurunathan, C. Fu, R. Cui, T. Zhu, G. J. Snyder, Mater. Adv., 2022, 3, 734 |
4. | Y. Zheng, T. J. Slade, L. Hu, X. Y. Tan, Y. Luo, Z. Z. Luo, J. Xu, Q. Yan, M. G. Kanatzidis, Chem. Soc Rev., 2021, 50, 9022 |
5. | C. L. Hu, K. Y. Xia, C. G. Fu, X. B. Zhao, T. J. Zhu, Energy Environ. Sci., 2022, 15, 1406 |
6. | O. Caballero-Calero, J. R. Ares, M. Martin-Gonzalez, Adv. Sustain. Syst., 2021, 5, 2100095 |
7. | P. Lemoine, V. P. Kumar, G. Guelou, V. Nassif, B. Raveau, E. Guilmeau, Chem. Mater., 2020, 32, 830 |
8. | Z. H. Ge, X. Chong, D. Feng, Y. X. Zhang, Y. Qiu, L. Xie, P. W. Guan, J. Feng, J. He, Mater. Today Phys., 2019, 8, 71 |
9. | F. H. Sun, J. F. Dong, H. C. Tang, P. P. Shang, H. L. Zhuang, H. H. Hu, C. F. Wu, Y. Pan, J. F. Li, Nano Energy, 2019, 57, 835 |
10. | H. Y. Xie, X. L. Su, Y. G. Yan, W. Liu, L. J. Chen, J. F. Fu, J. H. Yang, C. Uher, X. F. Tang, NPG Asia Mater., 2017, 9, e390 |
11. | H. Wang, S. Zheng, H. Wu, X. Xiong, Q. Xiong, H. Wang, Y. Wang, B. Zhang, X. Lu, G. Han, G. Wang, X. Zhou, Small, 2022, 18, e2104592 |
12. | I. Siloi, P. Gopal, S. Curtarolo, M. B. Nardelli, P. Vaqueiro, M. Fornari, ACS Appl. Energ. Mater., 2019, 2, 8068 |
13. | K. P. Zhao, P. F. Qiu, Q. F. Song, A. B. Blichfeld, E. Eikeland, D. D. Ren, B. H. Ge, B. B. Iversen, X. Shi, L. D. Chen, Mater. Today Phys., 2017, 1, 14 |
14. | Q. L. Meng, S. Kong, Z. W. Huang, Y. H. Zhu, H. C. Liu, X. W. Lu, P. Jiang, X. H. Bao, J. Mater. Chem. A, 2016, 4, 12624 |
15. | D. S. Nkemeni, Z. Yang, S. Y. Lou, G. H. Li, S. M. Zhou, J. Alloy Compd., 2021, 878, 160128 |
16. | H. C. Tang, H. L. Zhuang, B. W. Cai, Asfandiyar, J. F. Dong, F. H. Sun, J. F. Li, J. Mater. Chem. C, 2019, 7, 4026 |
17. | Z. H. Hou, D. Y. Wang, T. Hong, Y. X. Qin, S. Peng, G. T. Wang, J. F. Wang, X. Gao, Z. W. Huang, L. D. Zhao, J. Phys. Chem. Solids, 2021, 148, 109640 |
18. | M. Y. Li, Y. Liu, Y. Zhang, C. Chang, T. Zhang, D. W. Yang, K. Xiao, J. Arbiol, M. Ibanez, A. Cabot, Chem. Eng. J., 2022, 433, 133837 |
19. | Y. X. Qin, T. Hong, B. C. Qin, D. Y. Wang, W. K. He, X. Gao, Y. Xiao, L. D. Zhao, Adv. Funct. Mater., 2021, 31, 2102185 |
20. | Y. X. Qin, Y. Xiao, D. Y. Wang, B. C. Qin, Z. W. Huang, L. D. Zhao, J. Alloy Compd., 2020, 820, 153453 |
21. | M. H. Zhao, C. Chang, Y. Xiao, L. D. Zhao, J. Alloy Compd., 2018, 744, 769 |
22. | W. He, D. Wang, H. Wu, Y. Xiao, Y. Zhang, D. He, Y. Feng, Y. J. Hao, J. F. Dong, R. Chetty, L. Hao, D. Chen, J. Qin, Q. Yang, X. Li, J. M. Song, Y. Zhu, W. Xu, C. Niu, X. Li, G. Wang, C. Liu, M. Ohta, S. J. Pennycook, J. He, J. F. Li, L. D. Zhao, Science, 2019, 365, 1418 |
23. | H. T. Wang, H. Q. Ma, B. Duan, H. Y. Geng, L. Zhou, J. L. Li, X. L. Zhang, H. J. Yang, G. D. Li, P. C. Zhai, ACS Appl. Energ. Mater., 2021, 4, 1610 |
24. | R. Abinaya, S. Harish, S. Ponnusamy, M. Shimomura, M. Navaneethan, J. Archana, Chem. Eng. J., 2021, 416, 128484 |
25. | J. Guo, Y. X. Zhang, Z. Y. Wang, F. S. Zheng, Z. H. Ge, J. C. Fu, J. Feng, Nano Energy, 2020, 78, 105227 |
26. | M. Zhang, C. Zhang, Y. You, H. Xie, H. Chi, Y. Sun, W. Liu, X. Su, Y. Yan, X. Tang, C. Uher, ACS Appl. Mater. Interfaces, 2018, 10, 32344 |
27. | S. Tippireddy, R. Chetty, M. H. Naik, M. Jain, K. Chattopadhyay, R. C. Mallik, J. Phys. Chem. C, 2018, 122, 8735 |
28. | Y. Q. Zhao, Y. Gu, P. A. Zong, L. Pan, L. J. Zhang, K. Koumoto, Y. F. Wang, J. Alloy Compd., 2021, 887, 161338 |
29. | B. L. Du, R. Z. Zhang, M. Liu, K. Chen, H. F. Zhang, M. J. Reece, J. Mater. Chem. C, 2019, 7, 394 |
30. | T. Tanishita, K. Suekuni, H. Nishiate, C. H. Lee, M. Ohtaki, Phys. Chem. Chem. Phys., 2020, 22, 2081 |
31. | Y. B. Yang, P. Z. Ying, J. Z. Wang, X. L. Liu, Z. L. Du, Y. M. Chao, J. L. Cui, J. Mater. Chem. A, 2017, 5, 18808 |
32. | T. Deng, T. R. Wei, Q. Song, Q. Xu, D. Ren, P. Qiu, X. Shi, L. Chen, RSC Adv., 2019, 9, 7826 |
33. | J. Y. Hwang, J. Y. Ahn, K. H. Lee, S. W. Kim, J. Alloy Compd., 2017, 704, 282 |
34. | Y. D. Lang, L. Pan, C. C. Chen, Y. F. Wang, J. Electron. Mater., 2019, 48, 4179 |
35. | B. Ge, Z. Shi, C. Zhou, J. Hu, G. Liu, H. Xia, J. Xu, G. Qiao, J. Alloy Compd., 2019, 809, 151717 |
36. | J. D. Burnett, O. Gourdon, K. G. S. Ranmohotti, N. J. Takas, H. Djieutedjeu, P. F. P. Poudeu, J. A. Aitken, Mater. Chem. Phys., 2014, 147, 17 |
37. | P. Mangelis, P. Vaqueiro, J. C. Jumas, I. da Silva, R. I. Smith, A. V. Powell, J. Solid State Chem., 2017, 251, 204 |
38. | J.-H. Kim, D.-Y. Chung, D. Bilc, S. Loo, J. Short, S. D. Mahanti, T. Hogan, M. G. Kanatzidis, Chem. Mater., 2005, 17, 3606 |
39. | B. Jabar, F. Li, Z. Zheng, A. Mansoor, Y. Zhu, C. Liang, D. Ao, Y. Chen, G. Liang, P. Fan, W. Liu, Nat. Commun., 2021, 12, 7192 |
40. | F. Li, M. Ruan, B. Jabar, C. B. Liang, Y. X. Chen, D. W. Ao, Z. H. Zheng, P. Fan, W. S. Liu, Nano Energy, 2021, 88, 106273 |
41. | Q. R. Tao, F. C. Meng, Z. K. Zhang, Y. Cao, Y. F. Tang, J. G. Zhao, X. L. Su, C. Uher, X. F. Tang, Mater. Today Phys., 2021, 20, 100472 |
42. | J. B. Labégorre, A. Virfeu, A. Bourhim, H. Willeman, T. Barbier, F. Appert, J. Juraszek, B. Malaman, A. Huguenot, R. Gautier, V. Nassif, P. Lemoine, C. Prestipino, E. Elkaim, L. Pautrot-d'Alençon, T. Le Mercier, A. Maignan, R. Al Rahal Al Orabi, E. Guilmeau, Adv. Funct. Mater., 2019, 29, 1904112 |
43. | F. G. Cai, R. Dong, W. Sun, X. B. Lei, B. Yu, J. Chen, L. Yuan, C. Wang, Q. Y. Zhang, Chem. Mater., 2021, 33, 6003 |
44. | C. Bourges, Y. Bouyrie, A. R. Supka, R. Al Rahal Al Orabi, P. Lemoine, O. I. Lebedev, M. Ohta, K. Suekuni, V. Nassif, V. Hardy, R. Daou, Y. Miyazaki, M. Fornari, E. Guilmeau, J. Am. Chem. Soc., 2018, 140, 2186 |
45. | G. Guelou, V. P. Kumar, A. Bourhim, P. Lemoine, B. Raveau, A. Supka, O. I. Lebedev, R. A. Al Orabi, M. Fornari, K. Suekuni, E. Guilmeau, ACS Appl. Energ. Mater., 2020, 3, 4180 |
46. | C. Bourges, R. A. Al Orabi, Y. Miyazaki, J. Alloy Compd., 2020, 826, 154240 |
47. | K. Hashikuni, K. Suekuni, K. Watanabe, Y. Bouyrie, M. Ohta, M. Ohtaki, T. Takabatake, J. Solid State Chem., 2018, 259, 5 |
48. | P. Balaz, M. Hegedus, M. Reece, R. Z. Zhang, T. C. Su, I. Skorvanek, J. Briancin, M. Balaz, M. Mihalik, M. Tesinsky, M. Achimovicova, J. Electron. Mater., 2019, 48, 1846 |
49. | H. C. Tang, F. H. Sun, J. F. Dong, Asfandiyar, H. L. Zhuang, Y. Pan, J. F. Li, Nano Energy, 2018, 49, 267 |
50. | Y. He, P. Lu, X. Shi, F. Xu, T. Zhang, G. J. Snyder, C. Uher, L. Chen, Adv. Mater., 2015, 27, 3639 |
51. | H. Hu, H. L. Zhuang, Y. Jiang, J. Shi, J. W. Li, B. Cai, Z. Han, J. Pei, B. Su, Z. H. Ge, B. P. Zhang, J. F. Li, Adv. Mater., 2021, 33, e2103633 |
52. | D. P. Weller, D. T. Morelli, Front. Electro. Mater., 2022, 2, 913280 |
53. | G. Guelou, P. Lemoine, B. Raveau, E. Guilmeau, J. Mater. Chem. C, 2021, 9, 773 |
54. | S. Q. Qu, J. Zhao, Z. M. Jiang, D. Q. Jiang, Y. G. Wang, Mater. Chem. Front., 2021, 5, 1283 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Progressive overview of structural merits and performance-enhanced strategies in sulfur-based bulks and bottom-up composite.[7-12] Copyright 2019, American Chemical Society; Copyright 2019, Elsevier Ltd.; Copyright 2018, Elsevier Ltd.; Copyright 2017, The Authors; Copyright 2021, Wiley-VCH GmbH; Copyright 2019, American Chemical Society.
a Peak PF values in sulfur-based TE materials. There are two breakdowns: p-type and n-type binary copper[13-16], lead[17-21], tin[22], silver[23], molybdenum[24], bismuth[25] and titanium[26] sulfides, ternary Cu-[9, 11, 27-36], Co-[37] and Bi-based[38-43] sulfides, and polysulfides.[44-48] TE properties have been unfolded, and the current maximum value is 56.3 μW cm−1 K−2 at 300 K in p-type SnS0.91Se0.09 crystal.[22] b Electronic band structures for SnS1-xSex (x = 0, 0.09).[22] Copyright 2019, The Authors, AAAS. c Roadmaps toward high PF in p-type PbS compounds via compositing Cu.[19] Copyright 2021, Wiley-VCH GmbH. d Schematic illustration of the process for fabricating graphene/Cu2-xS composites.[49] Copyright 2018, Elsevier Ltd. e Structural characteristics among a single crystal, usual polycrystal and mosaic crystal.[50] Copyright 2015, Wiley-VCH Verlag GmbH & Co. kGaA, Weinheim. f The progress of porous network-structured Cu12Sb4S13.[51] Copyright 2021, Wiley-VCH GmbH.