Shan Huang, Yan Wang, Baohai Jia, Yong Yu, Peijian Lin, Lin Xie, Jiaqing He. High performance of n-type thermoelectric material AgInSe2 originated from strong acoustic phonon scattering[J]. Materials Lab, 2024, 3(1): 230024. doi: 10.54227/mlab.20230024
Citation: Shan Huang, Yan Wang, Baohai Jia, Yong Yu, Peijian Lin, Lin Xie, Jiaqing He. High performance of n-type thermoelectric material AgInSe2 originated from strong acoustic phonon scattering[J]. Materials Lab, 2024, 3(1): 230024. doi: 10.54227/mlab.20230024

RESEARCH ARTICLE

High performance of n-type thermoelectric material AgInSe2 originated from strong acoustic phonon scattering

More Information
  • Corresponding authors: xiel3@sustech.edu.cn; hejq@sustech.edu.cn
  • †These authors contributed equally to this work

  • The chalcopyrite system, which consists of ABC2 (where A can be Cu or Ag, B can be Ga or In, and C can be Se or Te), has potential uses in thermoelectric applications. However, the lack of high-performance n-type chalcopyrite thermoelectric has hindered their practical application. This study presents a new method for inhibiting cation vacancy in AgInSe2, achieved through the addition of excessive amounts of Ag and Br doping, which further increases electronic concentration. The resulting n-type material, Ag1.03InSe1.99Br0.01, exhibited superior thermoelectric performance at high temperatures, with a ZT of 1.2 at 900 K and an average ZT of 0.75 within a temperature range of 600-900 K. The remarkable thermal performance of this material is mainly due to its extremely low lattice thermal conductivity, which is attributed to the quartic anharmonicity and nondispersive phonon dispersion relation. These findings provide new insights into developing high-performance n-type chalcopyrite thermoelectric for practical use in energy conversion technologies.


  • 加载中
  • 1. J. P. Heremans, B. Wiendlocha and A. M. Chamoire, Energy Environ. Sci., 2012, 5, 5510
    2. C. Y. Fong and C. Kittel, Am. J. Phys., 1967, 35, 1091
    3. J. He and T. M. Tritt, Science, 2017, 357, eaak9997
    4. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder and S. W. Kim, Science, 2015, 348, 109
    5. S. Bathula, M. Jayasimhadri, N. Singh, A. K. Srivastava, J. Pulikkotil, A. Dhar and R. C. Budhani, Appl. Phys. Lett., 2012, 101, 213902
    6. N. Yang, C. Chen, L. Pan, Y. Zhao and Y. Wang, J. Alloys Compd., 2020, 847, 156410
    7. J. Zhang, L. Huang, C. Zhu, C. Zhou, B. Jabar, J. Li, X. Zhu, L. Wang, C. Song, H. Xin, D. Li and X. Qin, Adv. Mater., 2019, 31, 1905210
    8. Y. Cao, X. Su, F. Meng, T. P. Bailey, J. Zhao, H. Xie, J. He, C. Uher and X. Tang, Adv. Funct. Mater., 2020, 30, 2005861
    9. J. J. Plata, V. Posligua, A. M. Márquez, J. F. Sanz and R. Grau-Crespo, Chem. Mater., 2022, 34, 2833
    10. X. Su, N. Zhao, S. Hao, C. C. Stoumpos, M. Liu, H. Chen, H. Xie, Q. Zhang, C. Wolverton, X. Tang and M. G. Kanatzidis, Adv. Funct. Mater., 2019, 29, 1806534
    11. Y. Zhu, B. Wei, J. Liu, N. Z. Koocher, Y. Li, L. Hu, W. He, G. Deng, W. Xu, X. Wang, J. M. Rondinelli, L.-D. Zhao, G. J. Snyder and J. Hong, Mat. Today Phys., 2021, 19, 100428
    12. L. Xie, J. H. Feng, R. Li and J. Q. He, Phys. Rev. Lett., 2020, 125, 245901
    13. T. Feng, L. Lindsay and X. Ruan, Phys. Rev. B, 2017, 96, 161201(R
    14. X. Xu, J. Cui, Y. Yu, B. Zhu, Y. Huang, L. Xie, D. Wu and J. He, Energy Environ. Sci., 2020, 13, 5135
    15. X. Xu, Y. Huang, L. Xie, D. Wu, Z. Ge and J. He, Chem. Mater., 2020, 32, 1693
    16. B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu and J. He, Energy Environ. Sci., 2020, 13, 2106
    17. B. Zhu, W. Wang, J. Cui and J. He, Small, 2021, 17, 2101328
    18. X. Yang, T. Feng, J. Li and X. Ruan, Phys. Rev. B, 2019, 100, 245203
    19. T. Feng and X. Ruan, Phys. Rev. B, 2018, 97, 045202
    20. Z. Han, X. Yang, W. Li, T. Feng and X. Ruan, Phys. Commun., 2022, 270, 108179
    21. T. Feng and X. Ruan, Phys. Rev. B, 2016, 93, 045202
    22. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865
    23. G. Kresse, J. Hafner, Phys. Rev. B., 1993, 47, 558(R
    24. G. Kresse, J. Hafner, J. Phys.: Condens. Matter., 1994, 6, 8245
    25. G. Kresse, J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15
    26. G. Kresse, J. Furthmüller, Phys. Rev. B., 1996, 54, 11169
    27. J. Heyd, G. E. Scuseria, J. Chem. Phys., 2004, 121, 1187
    28. J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys., 2003, 118, 8207
    29. O. Hellman, I. A. Abrikosov, S. I. Simak, Phys. Rev. B., 2011, 84, 180301
    30. O. Hellman, P. Steneteg, I. A. Abrikosov, S. I. Simak, Phys. Rev. B, 2013, 87, 104111
    31. O. Hellman, D. A. Broido, Phys. Rev. B., 2014, 90, 134309
    32. J. L. Shay, B. Tell, H. M. Kasper and L. M. Schiavone, Phys. Rev. B, 1973, 7, 4485
    33. K. Koitabashi, S. Ozaki and S. Adachi, J. Appl. Phys., 2010, 107, 053516
    34. P. Qiu, Y. Qin, Q. Zhang, R. Li, J. Yang, Q. Song, Y. Tang, S. Bai, X. Shi and L. Chen, Adv. Sci., 2018, 5, 1700727
    35. X. Hu, W. He, D. Wang, B. Yuan, Z. Huang and L.-D. Zhao, Scr. Mater., 2019, 170, 99
    36. L. Su, T. Hong, D. Wang, S. Wang, B. Qin, M. Zhang, X. Gao, C. Chang and L.-D. Zhao, Mater. Today Phys., 2021, 20, 100452
    37. C. Zhou, Y. Yu, X. Zhang, Y. Cheng, J. Xu, Y. K. Lee, B. Yoo, O. Cojocaru-Mirédin, G. Liu, S.-P. Cho, M. Wuttig, T. Hyeon and I. Chung, Adv. Funct. Mater., 2020, 30, 1908405
    38. Y. Dong, M. A. McGuire, A.-S. Malik and F. J. DiSalvo, J. Solid State Chem., 2009, 182, 2602
    39. S. N. Guin, V. Srihari and K. Biswas, J. Mater. Chem. A, 2015, 3, 648
    40. H. Lee, Thermoelectrics: Design and Materials, John Wiley & Sons, America, 2016.
    41. T. C. Chasapis, D. Koumoulis, B. Leung, N. P. Calta, S.-H. Lo, V. P. Dravid, L.-S. Bouchard and M. G. Kanatzidis, APL Mater., 2015, 3, 083601
    42. Y. Zhu, Y. Liu, M. Wood, N. Z. Koocher, Y. Liu, L. Liu, T. Hu, J. M. Rondinelli, J. Hong, G. J. Snyder and W. Xu, Chem. Mater., 2019, 31, 8182
    43. L. Wang, P. Ying, Y. Deng, H. Zhou, Z. Du and J. Cui, RSC Adv., 2014, 4, 33897
    44. Y. Zhong, Y. Luo, X. Li and J. Cui, ACS Appl. Energy Mater., 2020, 3, 12468
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Information

Article Metrics

Article views(1573) PDF downloads(382) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint