Citation: | Shan Huang, Yan Wang, Baohai Jia, Yong Yu, Peijian Lin, Lin Xie, Jiaqing He. High performance of n-type thermoelectric material AgInSe2 originated from strong acoustic phonon scattering[J]. Materials Lab, 2024, 3(1): 230024. doi: 10.54227/mlab.20230024 |
The chalcopyrite system, which consists of ABC2 (where A can be Cu or Ag, B can be Ga or In, and C can be Se or Te), has potential uses in thermoelectric applications. However, the lack of high-performance n-type chalcopyrite thermoelectric has hindered their practical application. This study presents a new method for inhibiting cation vacancy in AgInSe2, achieved through the addition of excessive amounts of Ag and Br doping, which further increases electronic concentration. The resulting n-type material, Ag1.03InSe1.99Br0.01, exhibited superior thermoelectric performance at high temperatures, with a ZT of 1.2 at 900 K and an average ZT of 0.75 within a temperature range of 600-900 K. The remarkable thermal performance of this material is mainly due to its extremely low lattice thermal conductivity, which is attributed to the quartic anharmonicity and nondispersive phonon dispersion relation. These findings provide new insights into developing high-performance n-type chalcopyrite thermoelectric for practical use in energy conversion technologies.
1. | J. P. Heremans, B. Wiendlocha and A. M. Chamoire, Energy Environ. Sci., 2012, 5, 5510 |
2. | C. Y. Fong and C. Kittel, Am. J. Phys., 1967, 35, 1091 |
3. | J. He and T. M. Tritt, Science, 2017, 357, eaak9997 |
4. | S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder and S. W. Kim, Science, 2015, 348, 109 |
5. | S. Bathula, M. Jayasimhadri, N. Singh, A. K. Srivastava, J. Pulikkotil, A. Dhar and R. C. Budhani, Appl. Phys. Lett., 2012, 101, 213902 |
6. | N. Yang, C. Chen, L. Pan, Y. Zhao and Y. Wang, J. Alloys Compd., 2020, 847, 156410 |
7. | J. Zhang, L. Huang, C. Zhu, C. Zhou, B. Jabar, J. Li, X. Zhu, L. Wang, C. Song, H. Xin, D. Li and X. Qin, Adv. Mater., 2019, 31, 1905210 |
8. | Y. Cao, X. Su, F. Meng, T. P. Bailey, J. Zhao, H. Xie, J. He, C. Uher and X. Tang, Adv. Funct. Mater., 2020, 30, 2005861 |
9. | J. J. Plata, V. Posligua, A. M. Márquez, J. F. Sanz and R. Grau-Crespo, Chem. Mater., 2022, 34, 2833 |
10. | X. Su, N. Zhao, S. Hao, C. C. Stoumpos, M. Liu, H. Chen, H. Xie, Q. Zhang, C. Wolverton, X. Tang and M. G. Kanatzidis, Adv. Funct. Mater., 2019, 29, 1806534 |
11. | Y. Zhu, B. Wei, J. Liu, N. Z. Koocher, Y. Li, L. Hu, W. He, G. Deng, W. Xu, X. Wang, J. M. Rondinelli, L.-D. Zhao, G. J. Snyder and J. Hong, Mat. Today Phys., 2021, 19, 100428 |
12. | L. Xie, J. H. Feng, R. Li and J. Q. He, Phys. Rev. Lett., 2020, 125, 245901 |
13. | T. Feng, L. Lindsay and X. Ruan, Phys. Rev. B, 2017, 96, 161201(R |
14. | X. Xu, J. Cui, Y. Yu, B. Zhu, Y. Huang, L. Xie, D. Wu and J. He, Energy Environ. Sci., 2020, 13, 5135 |
15. | X. Xu, Y. Huang, L. Xie, D. Wu, Z. Ge and J. He, Chem. Mater., 2020, 32, 1693 |
16. | B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu and J. He, Energy Environ. Sci., 2020, 13, 2106 |
17. | B. Zhu, W. Wang, J. Cui and J. He, Small, 2021, 17, 2101328 |
18. | X. Yang, T. Feng, J. Li and X. Ruan, Phys. Rev. B, 2019, 100, 245203 |
19. | T. Feng and X. Ruan, Phys. Rev. B, 2018, 97, 045202 |
20. | Z. Han, X. Yang, W. Li, T. Feng and X. Ruan, Phys. Commun., 2022, 270, 108179 |
21. | T. Feng and X. Ruan, Phys. Rev. B, 2016, 93, 045202 |
22. | J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865 |
23. | G. Kresse, J. Hafner, Phys. Rev. B., 1993, 47, 558(R |
24. | G. Kresse, J. Hafner, J. Phys.: Condens. Matter., 1994, 6, 8245 |
25. | G. Kresse, J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15 |
26. | G. Kresse, J. Furthmüller, Phys. Rev. B., 1996, 54, 11169 |
27. | J. Heyd, G. E. Scuseria, J. Chem. Phys., 2004, 121, 1187 |
28. | J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys., 2003, 118, 8207 |
29. | O. Hellman, I. A. Abrikosov, S. I. Simak, Phys. Rev. B., 2011, 84, 180301 |
30. | O. Hellman, P. Steneteg, I. A. Abrikosov, S. I. Simak, Phys. Rev. B, 2013, 87, 104111 |
31. | O. Hellman, D. A. Broido, Phys. Rev. B., 2014, 90, 134309 |
32. | J. L. Shay, B. Tell, H. M. Kasper and L. M. Schiavone, Phys. Rev. B, 1973, 7, 4485 |
33. | K. Koitabashi, S. Ozaki and S. Adachi, J. Appl. Phys., 2010, 107, 053516 |
34. | P. Qiu, Y. Qin, Q. Zhang, R. Li, J. Yang, Q. Song, Y. Tang, S. Bai, X. Shi and L. Chen, Adv. Sci., 2018, 5, 1700727 |
35. | X. Hu, W. He, D. Wang, B. Yuan, Z. Huang and L.-D. Zhao, Scr. Mater., 2019, 170, 99 |
36. | L. Su, T. Hong, D. Wang, S. Wang, B. Qin, M. Zhang, X. Gao, C. Chang and L.-D. Zhao, Mater. Today Phys., 2021, 20, 100452 |
37. | C. Zhou, Y. Yu, X. Zhang, Y. Cheng, J. Xu, Y. K. Lee, B. Yoo, O. Cojocaru-Mirédin, G. Liu, S.-P. Cho, M. Wuttig, T. Hyeon and I. Chung, Adv. Funct. Mater., 2020, 30, 1908405 |
38. | Y. Dong, M. A. McGuire, A.-S. Malik and F. J. DiSalvo, J. Solid State Chem., 2009, 182, 2602 |
39. | S. N. Guin, V. Srihari and K. Biswas, J. Mater. Chem. A, 2015, 3, 648 |
40. | H. Lee, Thermoelectrics: Design and Materials, John Wiley & Sons, America, 2016. |
41. | T. C. Chasapis, D. Koumoulis, B. Leung, N. P. Calta, S.-H. Lo, V. P. Dravid, L.-S. Bouchard and M. G. Kanatzidis, APL Mater., 2015, 3, 083601 |
42. | Y. Zhu, Y. Liu, M. Wood, N. Z. Koocher, Y. Liu, L. Liu, T. Hu, J. M. Rondinelli, J. Hong, G. J. Snyder and W. Xu, Chem. Mater., 2019, 31, 8182 |
43. | L. Wang, P. Ying, Y. Deng, H. Zhou, Z. Du and J. Cui, RSC Adv., 2014, 4, 33897 |
44. | Y. Zhong, Y. Luo, X. Li and J. Cui, ACS Appl. Energy Mater., 2020, 3, 12468 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Crystal structure of AgInSe2. b XRD patterns of Ag1.03InSe2−xBrx (x= 0, 0.01, and 0.02). Low magnification STEM HAADF image c magnified STEM HAADF image d and EDX (e-g) of Ag1.03InSe2.
Band structures of AgInSe2 a and AgInSe1.75Br0.25 b, and Fermi energy EF is set to be zero. Projection of band dispersion of the conduction c and valence d band energies for AgInSe2 in the first Brillouin zone.
a Electrical conductivity σ, b Seebeck coefficient S and d PF of all samples from 300 to 900 K. c Electronic concentration n dependent Seebeck coefficient S for all samples at RT. The solid lines are calculated according to the single parabolic band model. The green and yellow regions represent the range of intrinsic semiconductors and degenerate semiconductors, respectively.
a Lattice thermal conductivity κlat of all samples from 300 to 900 K. b Calculated phonon dispersion and c phonon DOS of AgInSe2. d 4 curves that increase as phonon frequency rises represent the imaginary part Γω of the 3ph and 4ph self-energy functions at P point, and the purple and orange peak lines represent the lineshape of TA and LA at P point, respectively. e ZT and f average ZT (from 600 to 900 K) of all samples and other reported AgInSe2 materials [34, 44].