Citation: | Mohammad Nisar, Wenning Qin, Junze Zhang, Zhuanghao Zheng, Fu Li, Guangxing Liang, Ping Fan, Yue-Xing Chen. Synergistic optimization of thermoelectric performance in SnSe2 through Co-doping: anionic vacancy formation and band engineering[J]. Materials Lab, 2024, 3(1): 230023. doi: 10.54227/mlab.20230023 |
SnSe2 is a layered crystal structure material that is abundant in the Earth's crust and considered non-toxic. However, its thermoelectric properties are anisotropic due to the differences in its interlayer and intralayer electrical and thermal transport properties. The intrinsically poor thermoelectric performance of SnSe2 can be attributed to its lower electrical transport properties in its pristine condition. To address this, we developed a method involving combined mechanical alloying (MA) and spark plasma sintering (SPS) to synthesize n-type Sn-rich Cu-Br co-doped SnSe2 polycrystals. Optimization of Sn enrichment facilitated superior material selection for subsequent doping. The resulting substitutional doping induced a substantial rise in carrier concentration, leading to improved thermoelectric performance. Notably, the power factor displayed a significant increase, reaching approximately 795 µW m−1 K−2 at 765 K through Cu-Br co-doping. Furthermore, density functional theory (DFT) analysis elucidated a reduced bandgap and increased degeneracy within the electronic band structure and density of states, affirming the enhancement of thermoelectric properties in Cu-Br co-doped Sn-rich SnSe2 polycrystals. Finally, a maximum figure of merit (
1. | G. J. Snyder, E. S. Toberer, Nature Materials, 2008, 7, 105 |
2. | D. M. Rowe, Renewable Energy, 1999, 16, 1251 |
3. | J. Choi, Y. Jung, S. J. Yang, J. Y. Oh, J. Oh, K. Jo, J. G. Son, S. E. Moon, C. R. Park, H. Kim, ACS Nano, 2017, 11, 7608 |
4. | J. Jung, E. H. Suh, Y. J. Jeong, H. S. Yang, T. Lee, J. Jang, ACS Applied Materials & Interfaces, 2019, 11, 47330 |
5. | J. S. Son, H. Zhang, J. Jang, B. Poudel, A. Waring, L. Nally, D. V. Talapin, Angewandte Chemie International Edition, 2014, 53, 7466 |
6. | S. Jo, S. H. Park, H. W. Ban, D. H. Gu, B.-S. Kim, J. H. Son, H.-K. Hong, Z. Lee, H.-S. Han, W. Jo, J. E. Lee, J. S. Son, Journal of Alloys and Compounds, 2016, 689, 899 |
7. | Y. Zhang, Y. Chen, C. Gong, J. Yang, R. Qian, Y. Wang, Journal of Microelectromechanical Systems, 2007, 16, 1113 |
8. | H. J. Goldsmid, The Physics of Thermoelectric Energy Conversion, Morgan & Claypool Publishers, America, 2017. |
9. | A. D. LaLonde, Y. Pei, H. Wang, G. Jeffrey Snyder, Materials Today, 2011, 14, 526 |
10. | J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angewandte Chemie International Edition, 2009, 48, 8616 |
11. | Z. Yu, X. Wang, C. Liu, Y. Cheng, Z. Zhang, R. Si, X. Bai, X. Hu, J. Gao, Y. Peng, L. Miao, Journal of Advanced Ceramics, 2022, 11, 1144 |
12. | Z.-H. Zheng, D.-L. Zhang, B. Jabar, T.-B. Chen, M. Nisar, Y.-F. Chen, F. Li, S. Chen, G.-X. Liang, X.-H. Zhang, P. Fan, Y.-X. Chen, Materials Today Physics, 2022, 24, 100659 |
13. | Z.-G. Chen, X. Shi, L.-D. Zhao, J. Zou, Progress in Materials Science, 2018, 97, 283 |
14. | S. Singh, S. Lee, H. Kang, J. Lee, S. Baik, Energy Storage Materials, 2016, 3, 55 |
15. | Y. Sadia, Z. Aminov, D. Mogilyansky, Y. Gelbstein, Intermetallics, 2016, 68, 71 |
16. | G. Tan, L.-D. Zhao, M. G. Kanatzidis, Chemical Reviews, 2016, 116, 12123 |
17. | Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z. Ren, Proceedings of the National Academy of Sciences, 2013, 110, 13261 |
18. | L. D. Hicks, M. S. Dresselhaus, Physical Review B, 1993, 47, 12727 |
19. | M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. H. Bahl, B. B. Iversen, Nature Materials, 2008, 7, 811 |
20. | Y. Liu, W. Wang, J. Yang, S. Li, Advanced Sustainable Systems, 2018, 2, 1800046 |
21. | M. Samanta, T. Ghosh, S. Chandra, K. Biswas, Journal of Materials Chemistry A, 2020, 8, 12226 |
22. | F. Guo, B. Cui, H. Geng, Y. Zhang, H. Wu, Q. Zhang, B. Yu, S. J. Pennycook, W. Cai, J. Sui, Small, 2019, 15, 1902493 |
23. | L. Xie, D. He, J. He, Materials Horizons, 2021, 8, 1847 |
24. | W. He, D. Wang, H. Wu, Y. Xiao, Y. Zhang, D. He, Y. Feng, Y.-J. Hao, J.-F. Dong, R. Chetty, L. Hao, D. Chen, J. Qin, Q. Yang, X. Li, J.-M. Song, Y. Zhu, W. Xu, C. Niu, X. Li, G. Wang, C. Liu, M. Ohta, S. J. Pennycook, J. He, J.-F. Li, L.-D. Zhao, Science, 2019, 365, 1418 |
25. | B.-Z. Sun, Z. Ma, C. He, K. Wu, Physical Chemistry Chemical Physics, 2015, 17, 29844 |
26. | F. Li, Z. Zheng, Y. Li, W. Wang, J.-F. Li, B. Li, A. Zhong, J. Luo, P. Fan, Journal of Materials Science, 2017, 52, 10506 |
27. | Y. Luo, Y. Zheng, Z. Luo, S. Hao, C. Du, Q. Liang, Z. Li, K. A. Khor, K. Hippalgaonkar, J. Xu, Q. Yan, C. Wolverton, M. G. Kanatzidis, Advanced Energy Materials, 2018, 8, 1702167 |
28. | Y. Wu, W. Li, A. Faghaninia, Z. Chen, J. Li, X. Zhang, B. Gao, S. Lin, B. Zhou, A. Jain, Y. Pei, Materials Today Physics, 2017, 3, 127 |
29. | G. Li, G. Ding, G. Gao, Journal of Physics:Condensed Matter, 2017, 29, 015001 |
30. | Z. Fang, S. Hao, L. Long, H. Fang, T. Qiang, Y. Song, CrystEngComm, 2014, 16, 2404 |
31. | P. Yu, X. Yu, W. Lu, H. Lin, L. Sun, K. Du, F. Liu, W. Fu, Q. Zeng, Z. Shen, C. Jin, Q. J. Wang, Z. Liu, Advanced Functional Materials, 2016, 26, 137 |
32. | L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature, 2014, 508, 373 |
33. | Y. Qin, T. Xiong, J.-f. Zhu, Y.-l. Yang, H.-r. Ren, H.-l. He, C.-p. Niu, X.-h. Li, M.-q. Xie, T. Zhao, Journal of Advanced Ceramics, 2022, 11, 1671 |
34. | Y. Zhang, Y. Liu, K. H. Lim, C. Xing, M. Li, T. Zhang, P. Tang, J. Arbiol, J. Llorca, K. M. Ng, M. Ibáñez, P. Guardia, M. Prato, D. Cadavid, A. Cabot, Angewandte Chemie International Edition, 2018, 57, 17063 |
35. | C. Liu, Z. Huang, D. Wang, X. Wang, L. Miao, X. Wang, S. Wu, N. Toyama, T. Asaka, J. Chen, E. Nishibori, L.-D. Zhao, Journal of Materials Chemistry A, 2019, 7, 9761 |
36. | A.-T. Pham, T. H. Vu, Q. V. Nguyen, M. T. Vu, J. H. Park, S.-D. Park, S. Cho, ACS Applied Energy Materials, 2021, 4, 2908 |
37. | C. Zhou, Y. Yu, X. Zhang, Y. Cheng, J. Xu, Y. K. Lee, B. Yoo, O. Cojocaru-Mirédin, G. Liu, S.-P. Cho, M. Wuttig, T. Hyeon, I. Chung, Advanced Functional Materials, 2020, 30, 1908405 |
38. | P. Xu, T. Fu, J. Xin, Y. Liu, P. Ying, X. Zhao, H. Pan, T. Zhu, Science Bulletin, 2017, 62, 1663 |
39. | M. Nisar, Y.-X. Chen, W. Qin, A. Abbas, Z. Zheng, P. Fan, F. Li, Journal of Alloys and Compounds, 2023, 959, 170566 |
40. | H. Wiedemeier, G. Pultz, U. Gaur, B. Wunderlich, Thermochimica Acta, 1981, 43, 297 |
41. | G. Kresse, J. Furthmüller, Computational Materials Science, 1996, 6, 15 |
42. | G. Kresse, J. Furthmüller, Physical Review B, 1996, 54, 11169 |
43. | G. Kresse, D. Joubert, Physical Review B, 1999, 59, 1758 |
44. | J. P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters, 1996, 77, 3865 |
45. | J. P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters, 1997, 78, 1396 |
46. | S.-i. Kim, J. Bang, J. An, S. Hong, G. Bang, W. H. Shin, T. Kim, K. Lee, Journal of Alloys and Compounds, 2021, 868, 159161 |
47. | B. A. MacLeod, N. J. Stanton, I. E. Gould, D. Wesenberg, R. Ihly, Z. R. Owczarczyk, K. E. Hurst, C. S. Fewox, C. N. Folmar, K. Holman Hughes, B. L. Zink, J. L. Blackburn, A. J. Ferguson, Energy & Environmental Science, 2017, 10, 2168 |
48. | T. Fang, X. Li, C. Hu, Q. Zhang, J. Yang, W. Zhang, X. Zhao, D. J. Singh, T. Zhu, Advanced Functional Materials, 2019, 29, 1900677 |
49. | Y. Pei, H. Wang, G. J. Snyder, Advanced Materials, 2012, 24, 6125 |
50. | Y. Ding, B. Xiao, G. Tang, J. Hong, The Journal of Physical Chemistry C, 2017, 121, 225 |
51. | Y. Shu, X. Su, H. Xie, G. Zheng, W. Liu, Y. Yan, T. Luo, X. Yang, D. Yang, C. Uher, X. Tang, ACS Applied Materials & Interfaces, 2018, 10, 15793 |
52. | Y.-X. Chen, Z.-H. Ge, M. Yin, D. Feng, X.-Q. Huang, W. Zhao, J. He, Advanced Functional Materials, 2016, 26, 6836 |
53. | X. Shi, A. Wu, W. Liu, R. Moshwan, Y. Wang, Z.-G. Chen, J. Zou, ACS Nano, 2018, 12, 11417 |
54. | L. Cai-Yun, H. Wen-Ke, W. Dong-Yang, Z. Xiao, Z. Li-Dong, Acta Physica Sinica, 2021, 70, 208401 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
XRD patterns and of Sn1-xCuxSe1.95-yBry (0 ≤ x ≤ 0.035 and 0 ≤ y ≤ 0.07) samples a, b along the perpendicular direction, d, e along a parallel direction to the SPS pressing. c Schematic of Cu-Br co-doped SnSe1.95 crystal structure consisting of the SnSe6 octahedral layers. f Lattice constants (a = b, c) of Sn1-xCuxSe1.95-yBry samples.
FE-SEM images of the fresh fracture surfaces for the Sn1-xCuxSe1.95-yBry samples along a-c perpendicular and d-f parallel directions to the pressing of SPS, g-j the EDX and the equivalent mappings for Sn, Se, and Br atoms of the representative doped compound (Sn0.085Cu0.015Se1.92Br0.03).
Electrical transport properties for all the SnSe2-x (x = 0.05, 0.010, 0.15) samples, i.e. electrical conductivity, Seebeck coefficient as a function of temperature. a, b Thermal conductivity and ZT values as a function of temperature c, d along the perpendicular direction to SPS pressing.
Electrical transport properties for all the Sn1-xCuxSe1.95-yBry samples along perpendicular direction. a Electrical conductivity. b Carrier concentration and mobility versus doping content. c Seebeck coefficient, as a function of temperature. d Effective mass and Edef versus doping content. e Power factor as a function of carrier concentration and f Power factor versus temperature.
a-c Electronic band structures for the SnSe2, SnS1.95 and CB2 crystal structures. d-f Total and projected density of states of the samples. The calculations have been done by DFT using VASP.
Thermal conductivity for all the pure and Br-doped samples along the perpendicular direction to the SPS pressure. a and b Total thermal conductivity, as a function of temperature and doping content. c Lattice thermal and d electrical thermal conductivity as a function of temperature, respectively. e Lattice thermal conductivity as a function of