Mohammad Nisar, Wenning Qin, Junze Zhang, Zhuanghao Zheng, Fu Li, Guangxing Liang, Ping Fan, Yue-Xing Chen. Synergistic optimization of thermoelectric performance in SnSe2 through Co-doping: anionic vacancy formation and band engineering[J]. Materials Lab, 2024, 3(1): 230023. doi: 10.54227/mlab.20230023
Citation: Mohammad Nisar, Wenning Qin, Junze Zhang, Zhuanghao Zheng, Fu Li, Guangxing Liang, Ping Fan, Yue-Xing Chen. Synergistic optimization of thermoelectric performance in SnSe2 through Co-doping: anionic vacancy formation and band engineering[J]. Materials Lab, 2024, 3(1): 230023. doi: 10.54227/mlab.20230023

RESEARCH ARTICLE

Synergistic optimization of thermoelectric performance in SnSe2 through Co-doping: anionic vacancy formation and band engineering

More Information
  • Corresponding author: chenyx@szu.edu.cn
  • SnSe2 is a layered crystal structure material that is abundant in the Earth's crust and considered non-toxic. However, its thermoelectric properties are anisotropic due to the differences in its interlayer and intralayer electrical and thermal transport properties. The intrinsically poor thermoelectric performance of SnSe2 can be attributed to its lower electrical transport properties in its pristine condition. To address this, we developed a method involving combined mechanical alloying (MA) and spark plasma sintering (SPS) to synthesize n-type Sn-rich Cu-Br co-doped SnSe2 polycrystals. Optimization of Sn enrichment facilitated superior material selection for subsequent doping. The resulting substitutional doping induced a substantial rise in carrier concentration, leading to improved thermoelectric performance. Notably, the power factor displayed a significant increase, reaching approximately 795 µW m−1 K−2 at 765 K through Cu-Br co-doping. Furthermore, density functional theory (DFT) analysis elucidated a reduced bandgap and increased degeneracy within the electronic band structure and density of states, affirming the enhancement of thermoelectric properties in Cu-Br co-doped Sn-rich SnSe2 polycrystals. Finally, a maximum figure of merit (ZT) value of 0.46 was achieved at 765 K for the Sn0.985Cu0.015Se1.92Br0.03 sample, perpendicular to the SPS pressing direction, which was nearly threefold higher than the pure SnSe1.95. This compelling outcome highlights the improved thermoelectric performance of the co-doped SnSe2 polycrystals.


  • 加载中
  • 1. G. J. Snyder, E. S. Toberer, Nature Materials, 2008, 7, 105
    2. D. M. Rowe, Renewable Energy, 1999, 16, 1251
    3. J. Choi, Y. Jung, S. J. Yang, J. Y. Oh, J. Oh, K. Jo, J. G. Son, S. E. Moon, C. R. Park, H. Kim, ACS Nano, 2017, 11, 7608
    4. J. Jung, E. H. Suh, Y. J. Jeong, H. S. Yang, T. Lee, J. Jang, ACS Applied Materials & Interfaces, 2019, 11, 47330
    5. J. S. Son, H. Zhang, J. Jang, B. Poudel, A. Waring, L. Nally, D. V. Talapin, Angewandte Chemie International Edition, 2014, 53, 7466
    6. S. Jo, S. H. Park, H. W. Ban, D. H. Gu, B.-S. Kim, J. H. Son, H.-K. Hong, Z. Lee, H.-S. Han, W. Jo, J. E. Lee, J. S. Son, Journal of Alloys and Compounds, 2016, 689, 899
    7. Y. Zhang, Y. Chen, C. Gong, J. Yang, R. Qian, Y. Wang, Journal of Microelectromechanical Systems, 2007, 16, 1113
    8. H. J. Goldsmid, The Physics of Thermoelectric Energy Conversion, Morgan & Claypool Publishers, America, 2017.
    9. A. D. LaLonde, Y. Pei, H. Wang, G. Jeffrey Snyder, Materials Today, 2011, 14, 526
    10. J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angewandte Chemie International Edition, 2009, 48, 8616
    11. Z. Yu, X. Wang, C. Liu, Y. Cheng, Z. Zhang, R. Si, X. Bai, X. Hu, J. Gao, Y. Peng, L. Miao, Journal of Advanced Ceramics, 2022, 11, 1144
    12. Z.-H. Zheng, D.-L. Zhang, B. Jabar, T.-B. Chen, M. Nisar, Y.-F. Chen, F. Li, S. Chen, G.-X. Liang, X.-H. Zhang, P. Fan, Y.-X. Chen, Materials Today Physics, 2022, 24, 100659
    13. Z.-G. Chen, X. Shi, L.-D. Zhao, J. Zou, Progress in Materials Science, 2018, 97, 283
    14. S. Singh, S. Lee, H. Kang, J. Lee, S. Baik, Energy Storage Materials, 2016, 3, 55
    15. Y. Sadia, Z. Aminov, D. Mogilyansky, Y. Gelbstein, Intermetallics, 2016, 68, 71
    16. G. Tan, L.-D. Zhao, M. G. Kanatzidis, Chemical Reviews, 2016, 116, 12123
    17. Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z. Ren, Proceedings of the National Academy of Sciences, 2013, 110, 13261
    18. L. D. Hicks, M. S. Dresselhaus, Physical Review B, 1993, 47, 12727
    19. M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. H. Bahl, B. B. Iversen, Nature Materials, 2008, 7, 811
    20. Y. Liu, W. Wang, J. Yang, S. Li, Advanced Sustainable Systems, 2018, 2, 1800046
    21. M. Samanta, T. Ghosh, S. Chandra, K. Biswas, Journal of Materials Chemistry A, 2020, 8, 12226
    22. F. Guo, B. Cui, H. Geng, Y. Zhang, H. Wu, Q. Zhang, B. Yu, S. J. Pennycook, W. Cai, J. Sui, Small, 2019, 15, 1902493
    23. L. Xie, D. He, J. He, Materials Horizons, 2021, 8, 1847
    24. W. He, D. Wang, H. Wu, Y. Xiao, Y. Zhang, D. He, Y. Feng, Y.-J. Hao, J.-F. Dong, R. Chetty, L. Hao, D. Chen, J. Qin, Q. Yang, X. Li, J.-M. Song, Y. Zhu, W. Xu, C. Niu, X. Li, G. Wang, C. Liu, M. Ohta, S. J. Pennycook, J. He, J.-F. Li, L.-D. Zhao, Science, 2019, 365, 1418
    25. B.-Z. Sun, Z. Ma, C. He, K. Wu, Physical Chemistry Chemical Physics, 2015, 17, 29844
    26. F. Li, Z. Zheng, Y. Li, W. Wang, J.-F. Li, B. Li, A. Zhong, J. Luo, P. Fan, Journal of Materials Science, 2017, 52, 10506
    27. Y. Luo, Y. Zheng, Z. Luo, S. Hao, C. Du, Q. Liang, Z. Li, K. A. Khor, K. Hippalgaonkar, J. Xu, Q. Yan, C. Wolverton, M. G. Kanatzidis, Advanced Energy Materials, 2018, 8, 1702167
    28. Y. Wu, W. Li, A. Faghaninia, Z. Chen, J. Li, X. Zhang, B. Gao, S. Lin, B. Zhou, A. Jain, Y. Pei, Materials Today Physics, 2017, 3, 127
    29. G. Li, G. Ding, G. Gao, Journal of Physics:Condensed Matter, 2017, 29, 015001
    30. Z. Fang, S. Hao, L. Long, H. Fang, T. Qiang, Y. Song, CrystEngComm, 2014, 16, 2404
    31. P. Yu, X. Yu, W. Lu, H. Lin, L. Sun, K. Du, F. Liu, W. Fu, Q. Zeng, Z. Shen, C. Jin, Q. J. Wang, Z. Liu, Advanced Functional Materials, 2016, 26, 137
    32. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature, 2014, 508, 373
    33. Y. Qin, T. Xiong, J.-f. Zhu, Y.-l. Yang, H.-r. Ren, H.-l. He, C.-p. Niu, X.-h. Li, M.-q. Xie, T. Zhao, Journal of Advanced Ceramics, 2022, 11, 1671
    34. Y. Zhang, Y. Liu, K. H. Lim, C. Xing, M. Li, T. Zhang, P. Tang, J. Arbiol, J. Llorca, K. M. Ng, M. Ibáñez, P. Guardia, M. Prato, D. Cadavid, A. Cabot, Angewandte Chemie International Edition, 2018, 57, 17063
    35. C. Liu, Z. Huang, D. Wang, X. Wang, L. Miao, X. Wang, S. Wu, N. Toyama, T. Asaka, J. Chen, E. Nishibori, L.-D. Zhao, Journal of Materials Chemistry A, 2019, 7, 9761
    36. A.-T. Pham, T. H. Vu, Q. V. Nguyen, M. T. Vu, J. H. Park, S.-D. Park, S. Cho, ACS Applied Energy Materials, 2021, 4, 2908
    37. C. Zhou, Y. Yu, X. Zhang, Y. Cheng, J. Xu, Y. K. Lee, B. Yoo, O. Cojocaru-Mirédin, G. Liu, S.-P. Cho, M. Wuttig, T. Hyeon, I. Chung, Advanced Functional Materials, 2020, 30, 1908405
    38. P. Xu, T. Fu, J. Xin, Y. Liu, P. Ying, X. Zhao, H. Pan, T. Zhu, Science Bulletin, 2017, 62, 1663
    39. M. Nisar, Y.-X. Chen, W. Qin, A. Abbas, Z. Zheng, P. Fan, F. Li, Journal of Alloys and Compounds, 2023, 959, 170566
    40. H. Wiedemeier, G. Pultz, U. Gaur, B. Wunderlich, Thermochimica Acta, 1981, 43, 297
    41. G. Kresse, J. Furthmüller, Computational Materials Science, 1996, 6, 15
    42. G. Kresse, J. Furthmüller, Physical Review B, 1996, 54, 11169
    43. G. Kresse, D. Joubert, Physical Review B, 1999, 59, 1758
    44. J. P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters, 1996, 77, 3865
    45. J. P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters, 1997, 78, 1396
    46. S.-i. Kim, J. Bang, J. An, S. Hong, G. Bang, W. H. Shin, T. Kim, K. Lee, Journal of Alloys and Compounds, 2021, 868, 159161
    47. B. A. MacLeod, N. J. Stanton, I. E. Gould, D. Wesenberg, R. Ihly, Z. R. Owczarczyk, K. E. Hurst, C. S. Fewox, C. N. Folmar, K. Holman Hughes, B. L. Zink, J. L. Blackburn, A. J. Ferguson, Energy & Environmental Science, 2017, 10, 2168
    48. T. Fang, X. Li, C. Hu, Q. Zhang, J. Yang, W. Zhang, X. Zhao, D. J. Singh, T. Zhu, Advanced Functional Materials, 2019, 29, 1900677
    49. Y. Pei, H. Wang, G. J. Snyder, Advanced Materials, 2012, 24, 6125
    50. Y. Ding, B. Xiao, G. Tang, J. Hong, The Journal of Physical Chemistry C, 2017, 121, 225
    51. Y. Shu, X. Su, H. Xie, G. Zheng, W. Liu, Y. Yan, T. Luo, X. Yang, D. Yang, C. Uher, X. Tang, ACS Applied Materials & Interfaces, 2018, 10, 15793
    52. Y.-X. Chen, Z.-H. Ge, M. Yin, D. Feng, X.-Q. Huang, W. Zhao, J. He, Advanced Functional Materials, 2016, 26, 6836
    53. X. Shi, A. Wu, W. Liu, R. Moshwan, Y. Wang, Z.-G. Chen, J. Zou, ACS Nano, 2018, 12, 11417
    54. L. Cai-Yun, H. Wen-Ke, W. Dong-Yang, Z. Xiao, Z. Li-Dong, Acta Physica Sinica, 2021, 70, 208401
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Information

Article Metrics

Article views(1297) PDF downloads(525) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint