Citation: | Bingchao Qin, Dongrui Liu, Qian Cao, Xiao Zhang, Li-Dong Zhao. SnSe crystalline thermoelectrics[J]. Materials Lab. doi: 10.54227/mlab.20230029 |
Thermoelectric materials are increasingly crucial in addressing energy challenges for enabling conversion between heat and electricity. Crystalline tin selenide (SnSe) has gained significant attention since 2014 when its high-temperature thermoelectric performance was first reported. Based on unique characteristics in phonon and electron transports, numerous investigations have been conducted to promote the development of SnSe crystals for low- to mid-temperature waste recovery and electronic cooling applications. Herein, we concisely summarize the significant advancements for SnSe crystalline thermoelectrics, covering material performance optimization and full-scale thermoelectric device development. We then emphasize that the multiple valence bands and high in-plane carrier mobility promote high-performance p-type materials. Additionally, we highlight the critical role of three-dimensional (3D) charge and two-dimensional (2D) phonon transports for promising n-type out-of-plane conduction. Finally, personal insights into future research directions of enhancing performance of SnSe materials and devices are proposed, with the goal of advancing their practical applications.
1. | Q. Yan, M. G. Kanatzidis, Nat. Mater., 2022, 21, 503 |
2. | L. E. Bell, Science, 2008, 321, 1457 |
3. | Y. Qin, B. Qin, D. Wang, C. Chang, L.-D. Zhao, Energy Environ. Sci., 2022, 15, 4527 |
4. | G. Tan, L.-D. Zhao, M. G. Kanatzidis, Chem. Rev., 2016, 116, 12123 |
5. | X.-L. Shi, J. Zou, Z.-G. Chen, Chem. Rev., 2020, 120, 7399 |
6. | Z. Liu, W. Gao, F. Guo, W. Cai, Q. Zhang, J. Sui, Mater. Lab, 2022, 1, 220003 |
7. | J. He, T. M. Tritt, Science, 2017, 357, eaak9997 |
8. | Y. Xiao, Mater. Lab, 2022, 1, 220025 |
9. | T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, X. Zhao, Adv. Mater., 2017, 29, 1605884 |
10. | Y. Pei, A. D. LaLonde, N. A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, G. J. Snyder, Adv. Mater., 2011, 23, 5674 |
11. | B. Qin, L.-D. Zhao, Mater. Lab, 2022, 1, 220004 |
12. | L.-D. Zhao, Y. Xiao, S. Wang, Acta Metall. Sin., 2021, 57, 1171 |
13. | B. Qin, L.-D. Zhao, Science, 2022, 378, 832 |
14. | Y. Pei, H. Wang, G. Snyder, Adv. Mater., 2012, 24, 6125 |
15. | Y.-P. Wang, B.-C. Qin, D.-Y. Wang, T. Hong, X. Gao, L.-D. Zhao, Rare Met., 2021, 40, 2819 |
16. | H. Pang, X. Zhang, D. Wang, R. Huang, Z. Yang, X. Zhang, Y. Qiu, L.-D. Zhao, J. Materiomics, 2022, 8, 184 |
17. | K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature, 2012, 489, 414 |
18. | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J. Pennycook, J. He, Science, 2021, 371, 830 |
19. | S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N. K. Singh, A. Soni, J. He, U. V. Waghmare, K. Biswas, Science, 2021, 371, 722 |
20. | B. Qin, D. Wang, L.-D. Zhao, InfoMat, 2021, 3, 755 |
21. | B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, Science, 2008, 320, 634 |
22. | J. Mao, H. Zhu, Z. Ding, Z. Liu, G. A. Gamage, G. Chen, Z. Ren, Science, 2019, 365, 495 |
23. | J. Yang, G. Li, H. Zhu, N. Chen, T. Lu, J. Gao, L. Guo, J. Xiang, P. Sun, Y. Yao, R. Yang, H. Zhao, Joule, 2022, 6, 193 |
24. | Z. Liu, N. Sato, W. Gao, K. Yubuta, N. Kawamoto, M. Mitome, K. Kurashima, Y. Owada, K. Nagase, C.-H. Lee, J. Yi, K. Tsuchiya, T. Mori, Joule, 2021, 5, 1196 |
25. | Y. Pei, G. Tan, D. Feng, L. Zheng, Q. Tan, X. Xie, S. Gong, Y. Chen, J. F. Li, J. He, Adv. Energy Mater., 2017, 7, 1601450 |
26. | Y. Qin, T. Hong, B. Qin, D. Wang, W. He, X. Gao, Y. Xiao, L.-D. Zhao, Adv. Funct. Mater., 2021, 31, 2102185 |
27. | W. Li, L. Zheng, B. Ge, S. Lin, X. Zhang, Z. Chen, Y. Chang, Y. Pei, Adv. Mater., 2017, 29, 1605887 |
28. | C.-R. Guo, B.-C. Qin, D.-Y. Wang, L.-D. Zhao, Rare Met., 2022, 41, 3803 |
29. | R. Basu, A. Singh, Mater. Today Phys., 2021, 21, 100468 |
30. | H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Nat. Mater., 2012, 11, 422 |
31. | C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Nat. Commun., 2015, 6, 8144 |
32. | L. Zhang, X.-L. Shi, Y.-L. Yang, Z.-G. Chen, Mater. Today, 2021, 46, 62 |
33. | L. Li, W.-D. Liu, Q. Liu, Z.-G. Chen, Adv. Funct. Mater., 2022, 32, 2200548 |
34. | Y. Fan, Z. Liu, G. Chen, Small, 2021, 17, 2100505 |
35. | L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature, 2014, 508, 373 |
36. | L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science, 2016, 351, 141 |
37. | C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.-F. Li, J. He, L.-D. Zhao, Science, 2018, 360, 778 |
38. | B. Qin, D. Wang, X. Liu, Y. Qin, J.-F. Dong, J. Luo, J.-W. Li, W. Liu, G. Tan, X. Tang, J.-F. Li, J. He, L.-D. Zhao, Science, 2021, 373, 556 |
39. | L. Su, D. Wang, S. Wang, B. Qin, Y. Wang, Y. Qin, Y. Jin, C. Chang, L.-D. Zhao, Science, 2022, 375, 1385 |
40. | D. Liu, D. Wang, T. Hong, Z. Wang, Y. Wang, Y. Qin, L. Su, T. Yang, X. Gao, Z. Ge, B. Qin, L.-D. Zhao, Science, 2023, 380, 841 |
41. | D. Liu, B. Qin, L.-D. Zhao, Mater. Lab, 2022, 1, 220006 |
42. | B. Qin, D. Wang, T. Hong, Y. Wang, D. Liu, Z. Wang, X. Gao, Z.-H. Ge, L.-D. Zhao, Nat. Commun., 2023, 14, 1366 |
43. | S. Liu, X. Guo, M. Li, W.-H. Zhang, X. Liu, C. Li, Angew. Chem. Int. Ed., 2011, 50, 12050 |
44. | G. Shi, E. Kioupakis, Nano Lett., 2015, 15, 6926 |
45. | L.-D. Zhao, C. Chang, G. Tan, M. G. Kanatzidis, Energy Environ. Sci., 2016, 9, 3044 |
46. | C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, O. Delaire, Nat. Phys., 2015, 11, 1063 |
47. | Y. K. Lee, Z. Luo, S. P. Cho, M. G. Kanatzidis, I. Chung, Joule, 2019, 3, 719 |
48. | T.-R. Wei, G. Tan, X. Zhang, C.-F. Wu, J.-F. Li, V. P. Dravid, G. J. Snyder, M. G. Kanatzidis, J. Am. Chem. Soc., 2016, 138, 8875 |
49. | K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, X. Zhou, Energy Environ. Sci., 2016, 9, 454 |
50. | B. Qin, D. Wang, W. He, Y. Zhang, H. Wu, S. J. Pennycook, L.-D. Zhao, J. Am. Chem. Soc., 2019, 141, 1141 |
51. | B. Qin, Y. Zhang, D. Wang, Q. Zhao, B. Gu, H. Wu, H. Zhang, B. Ye, S. J. Pennycook, L.-D. Zhao, J. Am. Chem. Soc., 2020, 142, 5901 |
52. | B. Qin, W. He, L.-D. Zhao, J. Materiomics, 2020, 6, 671 |
53. | G. J. Snyder, A. H. Snyder, M. Wood, R. Gurunathan, B. H. Snyder, C. Niu, Adv. Mater., 2020, 32, 2001537 |
54. | D. Wu, L. Wu, D. He, L.-D. Zhao, W. Li, M. Wu, M. Jin, J. Xu, J. Jiang, L. Huang, Y. Zhu, M. G. Kanatzidis, J. He, Nano Energy, 2017, 35, 321 |
55. | Z. Wang, C. Fan, Z. Shen, C. Hua, Q. Hu, F. Sheng, Y. Lu, H. Fang, Z. Qiu, J. Lu, Z. Liu, W. Liu, Y. Huang, Z. A. Xu, D. W. Shen, Y. Zheng, Nat. Commun., 2018, 9, 47 |
56. | X. Li, K. Lu, Science, 2019, 364, 733 |
57. | I. Chung, Science, 2023, 380, 800 |
58. | K. Kutorasinski, B. Wiendlocha, S. Kaprzyk, J. Tobola, Phys. Rev. B, 2015, 91, 205201 |
59. | A. T. Duong, V. Q. Nguyen, G. Duvjir, V. T. Duong, S. Kwon, J. Y. Song, J. K. Lee, J. E. Lee, S. Park, T. Min, J. Lee, J. Kim, S. Cho, Nat. Commun., 2016, 7, 13713 |
60. | C. Chang, D. Wang, D. He, W. He, F. Zhu, G. Wang, J. He, L.-D. Zhao, Adv. Energy Mater., 2019, 9, 1901334 |
61. | H. Shi, L. Su, S. Bai, B. Qin, Y. Wang, S. Liu, C. Chang, L.-D. Zhao, Energy Environ. Sci., 2023, 16, 3128 |
62. | Z. Wang, J. Wang, Y. Zang, Q. Zhang, J.-A. Shi, T. Jiang, Y. Gong, C.-L. Song, S.-H. Ji, L.-L. Wang, L. Gu, K. He, W. Duan, X. Ma, X. Chen, Q.-K. Xue, Adv. Mater., 2015, 27, 4150 |
63. | H. Wang, Z. Pan, Mater. Lab, 2023, 2, 220053 |
64. | M. Jin, J. Jiang, R. Li, X. Wang, Y. Chen, Y. Chen, J. Xu, Cryst. Res. Technol., 2019, 54, 1900032 |
65. | M. Jin, H. Shao, H. Hu, D. Li, H. Shen, J. Xu, J. Jiang, J. Alloys Compd., 2017, 712, 857 |
66. | M. Jin, Z. Tang, R. Zhang, L. Zhou, X. Wang, R. Li, J. Alloys Compd., 2020, 824, 153869 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Timeline of the significant achievements for SnSe crystalline thermoelectrics. a Undoped SnSe exhibits exceptional ZTmax ~2.6, originating from extremely low thermal conductivity and strong anharmonicity.[35] b p-type SnSe crystals with continuous achievements on both room-temperature ZT and ZTave along the in-plane direction through the utilization of multiple valence bands transport,[36] promotion of multiband synglisis,[38] and implementation of lattice plainification strategy,[40] respectively. c n-type SnSe crystals with continuous achievements on both ZTmax and ZTave in the out-of-plane direction by utilizing 3D charge and 2D phonon transports,[37] and manipulating layered phonon-electron decoupling,[39] respectively.
ZTave (300-773 K) of typical p-type crystalline SnSe samples along out-of-plane and in-plane directions.[35, 36, 38, 40]
Schematic of the Lattice Plainification Strategy. The intrinsic defects in materials strongly scatter carriers and impede carrier transport. Lattice plainification by fixing lattice defects could improve carrier mobility and electrical properties, contributing to high-ranged TE performance especially near room temperature.[40, 57]
ZTave (300-773 K) of typical n-type crystalline SnSe samples along in-plane and out-of-plane directions.[37, 39, 60, 61]