Citation: | Dongrui Liu, Qian Cao, Bingchao Qin, LiDong Zhao. Progress and challenges for thermoelectric cooling: from materials and devices to manifold applications[J]. Materials Lab. doi: 10.54227/mlab.20230032 |
Due to the unique advantages of precise temperature control, fast response, noiselessness, miniaturization, and eco-friendliness, thermoelectric cooling (TEC) technology has been recognized as an optimal solution to mitigate the global warming and energy crisis issues, as well as being an effective alternative for thermal management. In this review, we started with the discussion of the current TEC materials and devices, and then provided an extensive summary of the manifold applications of TEC technology including electronic thermal management, electric vehicles, zero energy buildings, medical treatments, and civil applications, etc. Finally, challenging aspects of TEC materials and devices, as well as the possible research directions for future applications in various fields for TEC technology, were proposed, providing important prospect and significant guidance for TEC community.
1. | M. Isaac, D. P. v. Vuuren, Energy Policy, 2009, 37, 507 |
2. | B. Qin, D. Wang, T. Hong, Y. Wang, D. Liu, Z. Wang, X. Gao, Z.-H. Ge, L.-D. Zhao, Nat. Commun., 2023, 14, 1366 |
3. | Q. Yan, M. G. Kanatzidis, Nat. Mater., 2022, 21, 503 |
4. | G. Tan, L.-D. Zhao, M. G. Kanatzidis, Chem. Rev., 2016, 116, 12123 |
5. | J. Mao, G. Chen, Z. Ren, Nat. Mater., 2021, 20, 454 |
6. | J. Yang, G. Li, H. Zhu, N. Chen, T. Lu, J. Gao, L. Guo, J. Xiang, P. Sun, Y. Yao, R. Yang, H. Zhao, Joule, 2022, 6, 193 |
7. | B. Qin, L.-D. Zhao, Science, 2022, 378, 832 |
8. | W. Y. Chen, X. L. Shi, J. Zou, Z. G. Chen, Small Methods, 2022, 6, e2101235 |
9. | S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N. K. Singh, A. Soni, J. Q. He, U. V. Waghmare, K. Biswas, Science, 2021, 371, 722 |
10. | H. Shi, Y. Qin, B. Qin, L. Su, Y. Wang, Y. Chen, X. Gao, H. Liang, Z.-H. Ge, T. Hong, L.-D. Zhao, Adv. Energy Mater., 2022, 12, 2202539 |
11. | L. Su, H. Shi, S. Wang, D. Wang, B. Qin, Y. Wang, C. Chang, L.-D. Zhao, Adv. Energy Mater., 2023, 13, 2300312 |
12. | B. Qin, L.-D. Zhao, Mater. Lab, 2022, 1, 220004 |
13. | J. Cao, X. Y. Tan, N. Jia, J. Zheng, S. W. Chien, H. K. Ng, C. K. I. Tan, H. Liu, Q. Zhu, S. Wang, G. Zhang, K. Chen, Z. Li, L. Zhang, J. Xu, L. Hu, Q. Yan, J. Wu, A. Suwardi, Nano Energy, 2022, 96, 107147 |
14. | H.-L. Zhuang, H. Hu, J. Pei, B. Su, J.-W. Li, Y. Jiang, Z. Han, J.-F. Li, Energy Environ. Sci., 2022, 15, 2039 |
15. | Y. Sun, H. Wu, X. Dong, L. Xie, Z. Liu, R. Liu, Q. Zhang, W. Cai, F. Guo, J. Sui, Adv. Funct. Mater., 2023, 33, 2301423 |
16. | D. Liu, D. Wang, T. Hong, Z. Wang, Y. Wang, Y. Qin, L. Su, T. Yang, X. Gao, Z.-H. Ge, B. Qin, L.-D. Zhao, Science, 2023, 380, 841 |
17. | J. Mao, H. Zhu, Z. Ding, Z. Liu, G. A. Gamage, G. Chen, Z. Ren, Science, 2019, 365, 495 |
18. | Z. Liu, W. Gao, H. Oshima, K. Nagase, C. H. Lee, T. Mori, Nat. Commun., 2022, 13, 1120 |
19. | X. Wu, Y. Lin, Z. Han, H. Li, C. Liu, Y. Wang, P. Zhang, K. Zhu, F. Jiang, J. Huang, H. Fan, F. Cheng, B. Ge, W. Liu, Adv. Energy Mater., 2022, 12, 2203039 |
20. | L.-D. Zhao, H. J. Wu, S. Q. Hao, C. I. Wu, X. Y. Zhou, K. Biswas, J. Q. He, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Energy Environ. Sci., 2013, 6 |
21. | J. Shuai, B. H. Ge, J. Mao, S. W. Song, Y. M. Wang, Z. F. Ren, J. Am. Chem. Soc., 2018, 140, 1910 |
22. | X. Li, P. Liu, E. Zhao, Z. Zhang, T. T. A. Guidi, M. D. Le, M. Avdeev, K. Ikeda, T. Otomo, M. Kofu, K. Nakajima, J. Chen, L. He, Y. Ren, X. Wang, B. Wang, Z. Ren, H. Zhao, F. Wang, Nat. Commun., 2020, 11, 942 |
23. | K. D. Coonley, B. C. O'Quinn, J. C. Caylor, R. Venkatasubramanian, MRS Proc., 2003, 793, 147 |
24. | R. Venkatasubramanian, T. Colpitts, B. O’Quinn, S. Liu, N. El-Masry, M. Lamvik, Appl. Phys. Lett., 1999, 75, 1104 |
25. | T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge, Science, 2002, 297, 2229 |
26. | Y. Zhang, Y. Chen, C. Gong, J. Yang, R. Qian, Y. Wang, J. Microelectromech. S., 2007, 16, 1113 |
27. | W. Huang, M. Wang, L. Hu, C. Wang, Z. Xie, H. Zhang, Adv. Funct. Mater., 2020, 30, 2005223 |
28. | M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, Adv. Mater., 2007, 19, 1043 |
29. | G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, E. H. Sargent, Chem. Rev., 2015, 115, 12732 |
30. | Y. Qi, Z. Wang, M. Zhang, F. Yang, X. Wang, J. Mater. Chem. A, 2013, 1, 6110 |
31. | Z. Lu, M. Layani, X. Zhao, L. P. Tan, T. Sun, S. Fan, Q. Yan, S. Magdassi, H. H. Hng, Small, 2014, 10, 3551 |
32. | F. T. Rabouw, C. de Mello Donega, Top Curr. Chem., 2016, 374, 58 |
33. | W. Huang, J. Zhu, M. Wang, L. Hu, Y. Tang, Y. Shu, Z. Xie, H. Zhang, Adv. Funct. Mater., 2021, 31, 2007584 |
34. | J. Chen, H. Chen, F. Hao, X. Ke, N. Chen, T. Yajima, Y. Jiang, X. Shi, K. Zhou, M. Döbeli, T. Zhang, B. Ge, H. Dong, H. Zeng, W. Wu, L. Chen, ACS Energy Lett., 2017, 2, 915 |
35. | Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, D. Qiu, D. Zhu, Adv. Mater., 2012, 24, 932 |
36. | N. Toshima, K. Oshima, H. Anno, T. Nishinaka, S. Ichikawa, A. Iwata, Y. Shiraishi, Adv. Mater., 2015, 27, 2246 |
37. | J. A. Perez-Taborda, O. Caballero-Calero, L. Vera-Londono, F. Briones, M. Martin-Gonzalez, Adv. Energy Mater., 2018, 8, 1702093 |
38. | H. Böttner, G. Chen, R. Venkatasubramanian, MRS Bull., 2006, 31, 211 |
39. | H. Choi, K. Jeong, J. Chae, H. Park, J. Baeck, T. H. Kim, J. Y. Song, J. Park, K.-H. Jeong, M.-H. Cho, Nano Energy, 2018, 47, 374 |
40. | M. Tan, W.-D. Liu, X.-L. Shi, J. Shang, H. Li, X. Liu, L. Kou, M. Dargusch, Y. Deng, Z.-G. Chen, Nano Energy, 2020, 78, 105379 |
41. | O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Nat. Mater., 2011, 10, 429 |
42. | O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J. B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, X. Crispin, Nat. Mater., 2014, 13, 190 |
43. | G. H. Kim, L. Shao, K. Zhang, K. P. Pipe, Nat. Mater., 2013, 12, 719 |
44. | J.-H. Hsu, W. Choi, G. Yang, C. Yu, Org. Electron., 2017, 45, 182 |
45. | M. Tan, L. Hao, H. Li, C. Li, X. Liu, D. Yan, T. Yang, Y. Deng, Sci. Rep., 2020, 10, 5978 |
46. | M. Tan, W.-D. Liu, X.-L. Shi, H. Gao, H. Li, C. Li, X. B. Liu, Y. Deng, Z.-G. Chen, Small Methods, 2019, 3, 1900582 |
47. | M. Wang, J. Zhu, Y. Zi, W. Huang, ACS Appl. Mater. Interfaces, 2021, 13, 47302 |
48. | W. Huang, L. Hu, Y. Tang, Z. Xie, H. Zhang, Adv. Funct. Mater., 2020, 30, 2003301 |
49. | M. Wang, J. Zhu, Y. Zi, Z.-G. Wu, H. Hu, Z. Xie, Y. Zhang, L. Hu, W. Huang, J. Mater. Chem. A, 2021, 9, 12433 |
50. | Q. Jin, W. Shi, Y. Zhao, J. Qiao, J. Qiu, C. Sun, H. Lei, K. Tai, X. Jiang, ACS Appl. Mater. Interfaces, 2018, 10, 1743 |
51. | Q. Wu, J. Hu, Compos. B. Eng., 2016, 107, 59 |
52. | T.-T. Sun, B.-Y. Zhou, Q. Zheng, L.-J. Wang, W. Jiang, G. J. Snyder, Nat. Commun., 2020, 11, 572 |
53. | Y. Du, K. Cai, S. Chen, H. Wang, S.-Z. Shen, R. Donelson, T. Lin, Sci. Rep., 2015, 5, 6411 |
54. | S. J. Kim, J. H. We, B. J. Cho, Energy Environ. Sci., 2014, 7, 1959 |
55. | S. Shin, R. Kumar, J. W. Roh, D. S. Ko, H. S. Kim, S. I. Kim, L. Yin, S. M. Schlossberg, S. Cui, J. M. You, S. Kwon, J. Zheng, J. Wang, R. Chen, Sci. Rep., 2017, 7, 7317 |
56. | L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B Condens. Matter., 1993, 47, 12727 |
57. | M. Hong, J. Zou, Z.-G. Chen, Adv. Mater., 2019, 31, e1807071 |
58. | X. Zhao, D. Madan, Y. Cheng, J. Zhou, H. Li, S. M. Thon, A. E. Bragg, M. E. DeCoster, P. E. Hopkins, H. E. Katz, Adv. Mater., 2017, 29, 1606928 |
59. | T. Zhang, K. Li, C. Li, S. Ma, H. H. Hng, L. Wei, Adv. Electron. Mater., 2017, 3, 1600554 |
60. | Y. Lu, Z. D. Yu, R. Z. Zhang, Z.-F. Yao, H.-Y. You, L. Jiang, H. I. Un, B.-W. Dong, M. Xiong, J.-Y. Wang, J. Pei, Angew Chem. Int. Ed. Engl., 2019, 58, 11390 |
61. | Y. Lu, J.-Y. Wang, J. Pei, Chem. Mater., 2019, 31, 6412 |
62. | D. Neusser, C. Malacrida, M. Kern, Y. M. Gross, J. van Slageren, S. Ludwigs, Chem. Mater., 2020, 32, 6003 |
63. | S. Xu, M. Hong, X.-L. Shi, Y. Wang, L. Ge, Y. Bai, L. Wang, M. Dargusch, J. Zou, Z.-G. Chen, Chem. Mater., 2019, 31, 5238 |
64. | L. Wang, Y. Liu, Z. Zhang, B. Wang, J. Qiu, D. Hui, S. Wang, Compos. B. Eng., 2017, 122, 145 |
65. | H. Song, K. Cai, Energy, 2017, 125, 519 |
66. | K. Shi, F.-J. Zhang, C.-A. Di, T.-W. Yan, Y. Zou, X. Zhou, D.-B. Zhu, J.-Y. Wang, J. Pei, J. Am. Chem. Soc., 2015, 137, 6979 |
67. | Z. Han, A. Fina, Prog. Polym. Sci., 2011, 36, 914 |
68. | Y. Du, K.-F. Cai, S.-Z. Shen, R. Donelsonand, J.-Y. Xu, H.-X. Wang, T. Lin, RSC Adv., 2017, 7, 43737 |
69. | T. G. Novak, H. Shin, J. Kim, K. Kim, A. Azam, C. V. Nguyen, S. H. Park, J. Y. Song, S. Jeon, ACS Appl. Mater. Inter., 2018, 10, 17957 |
70. | X. Hu, K. Zhang, J. Zhang, S. Wang, Y. Qiu, ACS Appl. Energy Mater., 2018, 1, 4883 |
71. | X. Wang, F. Meng, Q. Jiang, W. Zhou, F. Jiang, T. Wang, X. Li, S. Li, Y. Lin, J. Xu, ACS Appl. Energy Mater., 2018, 1, 3123 |
72. | Y. Wang, W.-D. Liu, H. Gao, L. J. Wang, M. Li, X.-L. Shi, M. Hong, H. Wang, J. Zou, Z.-G. Chen, ACS Appl. Mater. Inter., 2019, 11, 31237 |
73. | Y. Wang, W.-D. Liu, X.-L. Shi, M. Hong, L.-J. Wang, M. Li, H. Wang, J. Zou, Z.-G. Chen, Chem. Eng. J., 2020, 391, 123513 |
74. | D. Ni, H. Song, Y. Chen, K. Cai, J. Materiomics, 2020, 6, 364 |
75. | Y. Du, X. Liu, J. Xu, S.-Z. Shen, Mater. Chem. Front., 2019, 3, 1328 |
76. | X.-L. Shi, W.-Y. Chen, X. Tao, J. Zou, Z.-G. Chen, Mater. Horizons, 2020, 7, 3065 |
77. | J. Qiao, Y. Zhao, Q. Jin, J. Tan, S. Kang, J. Qiu, K. Tai, ACS Appl. Mater. Inter., 2019, 11, 38075 |
78. | X.-L. Shi, K. Zheng, W.-D. Liu, Y. Wang, Y.-Z. Yang, Z.-G. Chen, J. Zou, Adv. Energy Mater., 2018, 8, 1800775 |
79. | N. Somdock, S. Kianwimol, A. Harnwunggmoung, A. Sakulkalavek, R. Sakdanuphab, J. Alloys Compd., 2019, 773, 78 |
80. | M. Ferhat, J. Nagao, J. Appl. Phys., 2000, 88, 813 |
81. | P. Nuthongkum, R. Sakdanuphab, M. Horprathum, A. Sakulkalavek, J. Electron. Mater., 2017, 46, 6444 |
82. | Y. Pei, N. A. Heinz, G. J. Snyder, J. Mater. Chem., 2011, 21, 18256 |
83. | J. B. Vaney, G. Delaizir, E. Alleno, O. Rouleau, A. Piarristeguy, J. Monnier, C. Godart, M. Ribes, R. Escalier, A. Pradel, A. P. Gonçalves, E. B. Lopes, G. J. Cuello, P. Ziolkowski, E. Müller, C. Candolfi, A. Dauscher, B. Lenoir, J. Mater. Chem. A, 2013, 1, 8190 |
84. | C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao, C. Shi, J. Mater. Process. Technol., 2017, 248, 1 |
85. | J. B. Vaney, A. Piarristeguy, A. Pradel, E. Alleno, B. Lenoir, C. Candolfi, A. Dauscher, A. P. Gonçalves, E. B. Lopes, G. Delaizir, J. Monnier, M. Ribes, C. Godart, J. Solid State Chem., 2013, 203, 212 |
86. | S. He, Y. Li, L. Liu, Y. Jiang, J. Feng, W. Zhu, J. Zhang, Z. Dong, Y. Deng, J. Luo, W. Zhang, G. Chen, Sci. Adv., 2020, 6, eaaz8423 |
87. | T. Varghese, C. Hollar, J. Richardson, N. Kempf, C. Han, P. Gamarachchi, D. Estrada, R. J. Mehta, Y. Zhang, Sci. Rep., 2016, 6, 33135 |
88. | L. M. Goncalves, P. Alpuim, A. G. Rolo, J. H. Correia, Thin Solid Films, 2011, 519, 4152 |
89. | H. Chang, C. Chen, Y. Kuo, Nanoscale, 2013, 5, 7017 |
90. | Y. Zhao, T. Yang, Y. Tong, J. Wang, J. Luan, Z. Jiao, D. Chen, Y. Yang, A. Hu, T. Liu, J. Kai, Acta Mater., 2017, 138, 72 |
91. | D. Madan, Z. Wang, P. K. Wright, J. W. Evans, Appl. Energy, 2015, 156, 587 |
92. | Z. Lu, H. Zhang, C. Mao, C. M. Li, Appl. Energy, 2016, 164, 57 |
93. | K. Jung, Y. Jung, C. Choi, J. Lee, J. Ko, Curr. Appl. Phys., 2016, 16, 1442 |
94. | J. H. We, S. J. Kim, B. J. Cho, Energy, 2014, 73, 506 |
95. | L. Huang, S. Lin, Z. Xu, H. Zhou, J. Duan, B. Hu, J. Zhou, Adv. Mater., 2020, 32, e1902034 |
96. | Y. Eom, D. Wijethunge, H. Park, S. H. Park, W. Kim, Appl. Energy, 2017, 206, 649 |
97. | J. Gao, L. Miao, C. Liu, X. Wang, Y. Peng, X. Wei, J. Zhou, Y. Chen, R. Hashimoto, T. Asaka, K. Koumoto, J. Mater. Chem. A, 2017, 5, 24740 |
98. | Y. Ding, Y. Qiu, K. Cai, Q. Yao, S. Chen, L. Chen, J. He, Nat. Commun., 2019, 10, 841 |
99. | J. Liu, Y. Jia, Q. Jiang, F. Jiang, C. Li, X. Wang, P. Liu, P. Liu, F. Hu, Y. Du, J. Xu, ACS Appl. Mater., 2018, 10, 44033 |
100. | F. Ren, P. Menchhofer, J. Kiggans, H. Wang, J. Electron. Mater., 2016, 45, 1412 |
101. | F. Jiang, L. Wang, C. Li, X. Wang, Y. Hu, H. Liu, H. Yang, F. Zhao, J. Xu, J. Polym. Res., 2017, 24, 68 |
102. | L. Ruan, Y. Zhao, Z. Chen, W. Zeng, S. Wang, D. Liang, J. Zhao, Polymers (Basel), 2020, 12, 553 |
103. | J.-Y. Kim, W. Lee, Y. H. Kang, S. Y. Cho, K.-S. Jang, Carbon, 2018, 133, 293 |
104. | Q. Meng, K. Cai, Y. Du, L. Chen, J. Alloys Compd., 2019, 778, 163 |
105. | Q. Jiang, C. Liu, J. Xu, B. Lu, H. Song, H. Shi, Y. Yao, L. Zhang, J. Polym. Sci. B Polym. Phys., 2014, 52, 737 |
106. | J.-Y. Kim, J. H. Mo, Y. H. Kang, S. Y. Cho, K.-S. Jang, Nanoscale, 2018, 10, 19766 |
107. | C. H. Chien, P. C. Lee, W. H. Tsai, C. H. Lin, C. H. Lee, Y. Y. Chen, Sci. Rep., 2016, 6, 23672 |
108. | J. A. Hernandez, A. Ruiz, L. F. Fonseca, M. T. Pettes, M. Jose-Yacaman, A. Benitez, Sci. Rep., 2018, 8, 11966 |
109. | M. Piao, M.-K. Joo, J. Na, Y.-J. Kim, M. Mouis, G. Ghibaudo, S. Roth, W.-Y. Kim, H.-K. Jang, G. P. Kennedy, U. Dettlaff-Weglikowska, G.-T. Kim, J. Phys. Chem. C, 2014, 118, 26454 |
110. | Y. Zhang, Y. J. Heo, M. Park, S. J. Park, Polymers (Basel), 2019, 11, 167 |
111. | J. Han, Y. Zeng, Y. Song, H. Liu, Electron. Mater. Lett., 2019, 15, 278 |
112. | X.-L. Shi, H. Wu, Q. Liu, W. Zhou, S. Lu, Z. Shao, M. Dargusch, Z.-G. Chen, Nano Energy, 2020, 78, 105195 |
113. | J. Wang, B.-Y. Zhang, H.-J. Kang, Y. Li, X. Yaer, J.-F. Li, Q. Tan, S. Zhang, G.-H. Fan, C.-Y. Liu, L. Miao, D. Nan, T.-M. Wang, L.-D. Zhao, Nano Energy, 2017, 35, 387 |
114. | J. Zhang, T. Zhang, H. Zhang, Z. Wang, C. Li, Z. Wang, K. Li, X. Huang, M. Chen, Z. Chen, Z. Tian, H. Chen, L.-D. Zhao, L. Wei, Adv. Mater., 2020, 32, e2002702 |
115. | P. Cataldi, M. Cassinelli, J. A. Heredia-Guerrero, S. Guzman-Puyol, S. Naderizadeh, A. Athanassiou, M. Caironi, Adv. Funct. Mater., 2020, 30, 1907301 |
116. | J. Li, B. Wang, Z. Ge, R. Cheng, L. Kang, X. Zhou, J. Zeng, J. Xu, X. Tian, W. Gao, K. Chen, C. Qiu, Z. Cheng, ACS Appl. Mater. Interfaces, 2019, 11, 39088 |
117. | Y. Wang, M. Hong, W.-D. Liu, X.-L. Shi, S.-D. Xu, Q. Sun, H. Gao, S. Lu, J. Zou, Z.-G. Chen, Chem. Eng. J., 2020, 397, 125360 |
118. | J. Liang, T. Wang, P. Qiu, S. Yang, C. Ming, H. Chen, Q. Song, K. Zhao, T.-R. Wei, D. Ren, Y.-Y. Sun, X. Shi, J. He, L. Chen, Energy Environ. Sci., 2019, 12, 2983 |
119. | W. Hou, X. Nie, W. Zhao, H. Zhou, X. Mu, W. Zhu, Q. Zhang, Nano Energy, 2018, 50, 766 |
120. | Y. Zheng, Q. Zhang, W. Jin, Y. Jing, X. Chen, X. Han, Q. Bao, Y. Liu, X. Wang, S. Wang, Y. Qiu, C.-a. Di, K. Zhang, J. Mater. Chem. A, 2020, 8, 2984 |
121. | X. Hao, B. Peng, G. Xie, Y. Chen, Appl. Therm. Eng., 2016, 100, 170 |
122. | L. Zhu, H. Tan, J. Yu, Energy Convers. Manag., 2013, 76, 685 |
123. | Y.-W. Chang, C.-C. Chang, M.-T. Ke, S.-L. Chen, Appl. Therm. Eng., 2009, 29, 2731 |
124. | H. Bottner, Ict: 2005 24th International Conference on Thermoelectrics, 2005, 1. |
125. | I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, R. Venkatasubramanian, Nat. Nanotechnol., 2009, 4, 235 |
126. | B. Yang, P. Wang, A. Bar-Cohen, IEEE Trans. Compon. Packaging Manuf. Technol., 2007, 30, 432 |
127. | D. D. Vaughn, II, O. D. Hentz, S. Chen, D. Wang, R. E. Schaak, Chem. Commun., 2012, 48, 5608 |
128. | G.-H. Kim, J. Gonder, J. Lustbader, A. Pesaran, World Electr. Veh. J., 2008, 2, 134 |
129. | Y. Liu, S. Yang, B. Guo, C. Deng, Adv. Mech. Eng., 2015, 6, 852712 |
130. | C. Alaoui, IEEE Trans. Veh. Technol., 2013, 62, 98 |
131. | L. Pérez-Lombard, J. Ortiz, C. Pout, Energy Build., 2008, 40, 394 |
132. | Z. Liu, L. Zhang, G. Gong, T. Han, Energy Convers. Manag., 2015, 94, 253 |
133. | I. Sarbu, E. Valea, C. Sebarchievici, Adv. Mater. Res., 2013, 772, 581 |
134. | X. Su, L. Zhang, Z. Liu, Y. Luo, D. Chen, W. Li, Renew. Energ., 2021, 171, 1061 |
135. | R. A. Khire, A. Messac, S. Van Dessel, Int. J. Heat Mass Tran. 2005, 48, 4028. [136] X. Xu, S. Van Dessel, Energy Build., 2008, 40, 168 |
136. | F. Liu, M. Zhang, P. Nan, X. Zheng, Y. Li, K. Wu, Z. Han, B. Ge, X. Zhao, C. Fu, T. Zhu, Small Science, 2023, 1, 2300082 |
137. | B. Hu, X. Shi, J. Zou, Z. Chen, Chem. Eng. J., 2022, 437, 135268 |
138. | B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu, J. He, Energy Environ. Sci., 2020, 13, 2106 |
139. | L. I. Anatychuk, N. V. Pasechnikova, V. O. Naumenko, O. S. Zadorozhnyi, S. L. Danyliuk, M. V. Havryliukйй, V. A. Tiumentsev, R. R. Kobylianskyi, Phys. Chem. Solid State, 2020, 21, 140 |
140. | L. M. Katz, A. S. Young, J. E. Frank, Y. Wang, K. Park, Brain Res., 2004, 1017, 85 |
141. | P. S. Midulla, A. Gandsas, A. M. Sadeghi, C. K. Mezrow, M. E. Yerlioglu, W. Wang, D. Wolfe, M. A. Ergin, R. B. Griepp, J. Cardiac. Surg., 1994, 9, 560 |
142. | R. Ahiska, A. H. Yavuz, M. Kaymaz, İ. Güler, Instrum. Sci. Technol., 2008, 36, 636 |
143. | D. J. Thurman, E. Beghi, C. E. Begley, A. T. Berg, J. R. Buchhalter, D. Ding, D. C. Hesdorffer, W. A. Hauser, L. Kazis, R. Kobau, B. Kroner, D. Labiner, K. Liow, G. Logroscino, M. T. Medina, C. R. Newton, K. Parko, A. Paschal, P. M. Preux, J. W. Sander, A. Selassie, W. Theodore, T. Tomson, S. Wiebe, I. C. o. Epidemiology, Epilepsia, 2011, 52, 2 |
144. | S. L. Moshe, E. Perucca, P. Ryvlin, T. Tomson, Lancet, 2015, 385, 884 |
145. | M. Fujii, H. Fujioka, T. Oku, N. Tanaka, H. Imoto, Y. Maruta, S. Nomura, K. Kajiwara, T. Saito, T. Yamakawa, T. Yamakawa, M. Suzuki, Neurol. Med-chir., 2010, 50, 839 |
146. | N. Putra, Ardiyansyah, W. Sukyono, D. Johansen, F. N. Iskandar, Cryogenics, 2010, 50, 759 |
147. | D. Astrain, A. Martínez, A. Rodríguez, Appl. Therm. Eng., 2012, 39, 140 |
148. | J. G. Vián, D. Astrain, Appl. Therm. Eng., 2009, 29, 3319 |
149. | R. A. Kishore, A. Nozariasbmarz, B. Poudel, M. Sanghadasa, S. Priya, Nat. Commun., 2019, 10, 1765 |
150. | M. H. Yazdi, E. Solomin, A. Fudholi, K. Sopian, P. L. Chong, Therm. Sci. Eng. Prog., 2021, 26, 101127 |
151. | E. Söylemez, E. Alpman, A. Onat, Int. J. Refrig., 2018, 95, 93 |
152. | L. Lou, D. Shou, H. Park, D. Zhao, Y. S. Wu, X. Hui, R. Yang, E. C. Kan, J. Fan, Energ. Build., 2020, 226, 110374 |
153. | M. Jradi, N. Ghaddar, K. Ghali, Int. J. Energ. Res., 2012, 36, 963 |
154. | H. Zhu, W. Li, A. Nozariasbmarz, N. Liu, Y. Zhang, S. Priya, B. Poudel, Nat. Commun., 2023, 14, 3300 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic diagram of TEC materials, devices, and their manifold applications in different fields, typically including electronic thermal management, electric vehicles, zero energy buildings, medical treatments, and civil applications (mainly including refrigerators and wearable cooling), etc.
a Schematic diagram of quantum confinement effects; b Bi0.5Sb1.5Te3/PEDOT: PSS-based flexible thermoelectric film; c-d Room-temperature electrical transport properties of PEDOT: PSS film before and after adding Bi0.5Sb1.5Te3 filler.[117] Copyright 2020, Elsevier; e Fabricated full-inorganic thermoelectric device.[118] Copyright 2019, Royal Society of Chemistry; f A prototype flexible device composed of thick films.[119] Copyright 2018, Elsevier; g SnSe fiber fabrication and morphology.[114] Copyright 2020, Wiley; h The textiles made from warp-knitted spacer fabric in their as-prepared state, exhibiting admirable flexibility.[120] Copyright 2020, Royal Society of Chemistry.
a Picture of Bi2Te3-based superlattice device used for electronic thermal management. The TEC device is powered by wires on both sides and installed on the test chip; b The operational infrared photos of both the electronic chip and TEC device reveal that, except for the hot spot, the entire section of the chip covered by TEC device exhibits comparatively lower temperature, suggesting that TEC effectively dissipates heat flow generated by the electronic device.[125] Copyright 2009, Springer Nature.
Schematic diagram of TEC-based BTMS integrated with a air cooling[130] and b liquid cooling[129], respectively.
Schematic diagram of a active building wall[135] and b active building window[136] with the integrated PV and TEC technologies.[136] Copyright 2008, Elsevier.
a The cooling temperature of the TEC helmet as the function of operating time, with the insets showing the TEC helmet and its inner structure.[143] Copyright 2008, Taylor & Francis Group; b Schematic diagram of TEC device for treating epilepsy;[146] c Schematic diagram of a cryoprobe for cryosurgery. DC: direct current.[147]
a Schematic diagram of TEC and vapor compression hybrid refrigerator. The compressor played a crucial role in the refrigeration cycle by compressing the refrigerant. During this process, the refrigerant undergoes evaporation and condensation, which enables it to absorb and release internal heat. In order to further enhance the refrigeration efficiency, a TEC system has been installed in the chill compartment, which is located between the fresh food and freezer compartments. This innovative system rapidly dissipated the heat generated by the upper and lower compartments to the environment. As a result, the overall cooling efficiency of the hybrid refrigerator was significantly improved;[152] b Operational schematic diagram of personal thermal management using TEC-based underwear;[153] c Structural schematic diagram of TEC-PV integrated freshwater generator.[154]