Citation: | Zihao Zhao, Hongyao Xie, Li-Dong Zhao. Recent progress on quaternary copper-based diamondoid thermoelectric materials[J]. Materials Lab, 2024, 3(3): 240005. doi: 10.54227/mlab.20240005 |
The rising concern on energy and environmental crises have sparked global interest in developing sustainable new energy and high-efficient energy conversion technologies. Thermoelectric technology has gained attention due to its potential for application in waste heat recovery and solid-state refrigeration. However, the application of traditional thermoelectric materials remains limited due to their expensive and toxic elemental composition. Recently, quaternary copper-based diamondoid materials have garnered significant interest due to their unique transport properties, high element abundance, and low toxicity. Many of these materials have demonstrated promising
1. | H. Xie, L. Zhao, M. G. Kanatzidis, Interdiscip. Mater., 2024, 3, 5 |
2. | Y. Liu, H. Xie, Z. Li, Y. Zhang, C. D. Malliakas, M. Al Malki, S. Ribet, S. Hao, T. Pham, Y. Wang, X. Hu, R. dos Reis, G. J. Snyder, C. Uher, C. Wolverton, M. G. Kanatzidis, V. P. Dravid, J. Am. Chem. Soc., 2023, 145, 8677 |
3. | H. Xie, X. Su, S. Hao, C. Wolverton, C. Uher, X. Tang, M. G. Kanatzidis, Phys. Rev. Mater., 2020, 4, 025405 |
4. | Z. Zheng, X. Su, R. Deng, C. Stoumpos, H. Xie, W. Liu, Y. Yan, S. Hao, C. Uher, C. Wolverton, M. G. Kanatzidis, X. F. Tang, J. Am. Chem. Soc., 2018, 140, 2673 |
5. | H. Xie, L. Zhao, Mater. Futures, 2024, 3, 013501 |
6. | H. Xie, X. Su, T. P. Bailey, C. Zhang, W. Liu, C. Uher, X. Tang, M. G. Kanatzidis, Chem. Mater., 2020, 32, 2639 |
7. | D. Liu, D. Wang, T. Hong, Z. Wang, Y. Wang, Y. Qin, L. Su, T. Yang, X. Gao, Z. Ge, B. Qin, L. Zhao, Science, 2023, 380, 841 |
8. | Y. Zheng, Q. Zhang, X. Su, H. Xie, S. Shu, T. Chen, G. Tan, Y. Yan, X. Tang, C. Uher, G. J. Snyder, Adv. Energy Mater., 2015, 5, 1401391 |
9. | D. Gao, S. Wang, Y. Wen, F. Fang, Y. Li, S. Liu, Y. Wang, H. Xie, Y. Qiu, L. Zhao, Mater. Today Phys., 2024, 41, 101353 |
10. | H. Xie, S. Hao, J. Bao, T. J. Slade, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, J. Am. Chem. Soc., 2020, 142, 9553 |
11. | G. Zheng, X. Su, H. Xie, Y. Shu, T. Liang, X. She, W. Liu, Y. Yan, Q. Zhang, C. Uher, M. G. Kanatzidis, X. F. Tang, Energy Environ. Sci., 2017, 10, 2638 |
12. | J. He, T. M. Tritt, Science, 2017, 357, 1369 |
13. | S. Bai, X. Zhang, L. Zhao, Acc. Chem. Res., 2023, 56, 3065 |
14. | L. Zhao, S. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature, 2014, 508, 373 |
15. | L. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science, 2016, 351, 141 |
16. | E. S. Bozin, H. Xie, A. M. M. Abeykoon, S. M. Everett, M. G. Tucker, M. G. Kanatzidis, S. J. L. Billinge, Phys. Rev. Lett., 2023, 131, 036101 |
17. | J. Qiu, Y. Yan, T. Luo, K. Tang, L. Yao, J. Zhang, M. Zhang, X. Su, G. Tan, H. Xie, M. G. Kanatzidis, C. Uher, X. Tang, Energy Environ. Sci., 2019, 12, 3106 |
18. | B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu, J. He, Energy Environ. Sci., 2020, 13, 2106 |
19. | L. Wang, Y. Wen, S. Bai, C. Chang, Y. Li, S. Liu, D. Liu, S. Wang, Z. Zhao, S. Zhan, Q. Cao, X. Gao, H. Xie, L. Zhao, Nat. Commun., 2024, 15, 3782 |
20. | S. Wang, Y. Wen, Y. Zhu, Z. Wang, D. Liu, J. Zheng, S. Zhan, H. Xie, Z. Ge, X. Gao, Q. Cao, C. Chang, L. Zhao, Small, 2024, 20, 2400866 |
21. | H. Pang, Y. Qin, B. Qin, L. Yu, X. Su, H. Liang, Z. Ge, Q. Cao, Q. Tan, L. Zhao, Adv. Funct. Mater., 2024, 34, 2401716 |
22. | S. Liu, Y. Wen, S. Bai, H. Shi, Y. Qin, B. Qin, D. Liu, Q. Cao, X. Gao, L. Su, C. Chang, X. Zhang, L. Zhao, Adv. Mater., 2024, 36, 2401828 |
23. | X. Chen, H. Wu, J. Cui, Y. Xiao, Y. Zhang, J. He, Y. Chen, J. Cao, W. Cai, S. J. Pennycook, Z. Liu, L. Zhao, J. Sui, Nano Energy, 2018, 52, 246 |
24. | D. Li, B. Zhang, H. Ming, L. Wang, Y. Zu, X. Qin, ACS Appl. Mater. Interfaces, 2021, 13, 34534 |
25. | J. Vinodhini, V. Shalini, S. Harish, H. Ikeda, J. Archana, M. Navaneethan, J. Colloid Interface Sci., 2023, 651, 436 |
26. | K. Imasato, S. D. Kang, S. Ohno, G. J. Snyder, Mater. Horiz., 2018, 5, 59 |
27. | H. Xie, Y. Liu, Y. Zhang, S. Hao, Z. Li, M. Cheng, S. Cai, G. J. Snyder, C. Wolverton, C. Uher, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc., 2022, 144, 9113 |
28. | J. Yu, C. Fu, Y. Liu, K. Xia, U. Aydemir, T. C. Chasapis, G. J. Snyder, X. Zhao, T. Zhu, Adv. Energy Mater., 2018, 8, 1701313 |
29. | X. Cheng, B. Zhu, D. Yang, X. Su, W. Liu, H. Xie, Y. Zheng, X. Tang, ACS Appl. Mater. Interfaces, 2022, 14, 5439 |
30. | L. Hu, Y. Luo, Y. Fang, F. Qin, X. Cao, H. Xie, J. Liu, J. Dong, A. Sanson, M. Giarola, X. Tan, Y. Zheng, A. Suwardi, Y. Z. Huang, K. Hippalgaonkar, J. He, W. Zhang, J. Xu, Q. Yan, M. G. Kanatzidis, Adv. Energy Mater., 2021, 11, 2100661 |
31. | X. Cheng, D. Yang, X. Su, H. Xie, W. Liu, Y. Zheng, X. Tang, ACS Appl. Mater. Interfaces, 2021, 13, 55178 |
32. | Y. Cao, X. Su, F. Meng, T. P. Bailey, J. Zhao, H. Xie, J. He, C. Uher, X. Tang, Adv. Funct. Mater., 2020, 30, 2005861 |
33. | X. Shi, F. Huang, M. Liu, L. Chen, Appl. Phys. Lett., 2009, 94, 122103 |
34. | M. Liu, I. Chen, F. Huang, L. Chen, Adv. Mater., 2009, 21, 3808 |
35. | H. Xie, S. Hao, S. Cai, T. P. Bailey, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Energy Environ. Sci., 2020, 13, 3693 |
36. | R. Liu, L. Xi, H. Liu, X. Shi, W. Zhang, L. Chen, Chem. Commun., 2012, 48, 3818 |
37. | T. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi, G. J. Snyder, A. Harnwunggmoung, T. Sugahara, Y. Ohishi, H. Muta, S. Yamanaka, Adv. Mater., 2012, 24, 3622 |
38. | H. Xie, Z. Li, Y. Liu, Y. Zhang, C. Uher, V. P. Dravid, C. Wolverton, M. G. Kanatzidis, J. Am. Chem. Soc., 2023, 145, 3211 |
39. | H. Xie, E. S. Bozin, Z. Li, M. Abeykoon, S. Banerjee, J. P. Male, G. J. Snyder, C. Wolverton, S. J. L. Billinge, M. G. Kanatzidis, Adv. Mater., 2022, 34, 2202255 |
40. | H. Xie, X. Su, G. Zheng, T. Zhu, K. Yin, Y. Yan, C. Uher, M. G. Kanatzidis, X. Tang, Adv. Energy Mater., 2017, 7, 1601299 |
41. | H. Xie, X. Su, S. Hao, C. Zhang, Z. Zhang, W. Liu, Y. Yan, C. Wolverton, X. Tang, M. G. Kanatzidis, J. Am. Chem. Soc., 2019, 141, 18900 |
42. | M. Liu, F. Huang, L. Chen, I. Chen, Appl. Phys. Lett., 2009, 94, 202103 |
43. | Q. Jiang, H. Yan, Y. Lin, Y. Shen, J. Yang, M. J. Reece, J. Mater. Chem. A, 2020, 8, 10909 |
44. | Y. Dong, H. Wang, G. S. Nolas, Physica Status Solidi: RRL, 2014, 8, 61 |
45. | Z. Li, W. Zhang, B. Gu, C. Zhao, B. Ye, C. Xiao, Y. Xie, J. Mater. Chem. A, 2021, 9, 1006 |
46. | F. Liu, J. Zheng, M. Huang, L. He, W. Q. Ao, F. Pan, J. Li, Sci. Rep., 2014, 4, 5774 |
47. | B. Wang, Y. Li, J. Zheng, M. Xu, F. Liu, W. Q. Ao, J. Li, F. Pan, Sci. Rep., 2015, 5, 9365 |
48. | R. Chetty, A. Bali, R. C. Mallik, Intermetallics, 2016, 72, 17 |
49. | F. Mehmood, Y. Sun, W. Su, G. Chebanova, J. Zhai, L. Wang, M. Khan, A. Romanenko, H. Wang, C. Wang, Physica Status Solidi: RRL, 2022, 16, 2200049 |
50. | K. Wei, L. Beauchemin, H. Wang, W. D. Porter, J. Martin, G. S. Nolas, J. Alloys Compd., 2015, 650, 844 |
51. | Q. Song, P. Qiu, H. Chen, K. Zhao, M. Guan, Y. Zhou, T. Wei, D. Ren, L. Xi, J. Yang, Z. Chen, X. Shi, L. Chen, Mater. Today Phys., 2018, 7, 45 |
52. | T. Parashchuk, O. Cherniushok, O. Smitiukh, O. Marchuk, K. T. Wojciechowski, Chem. Mater., 2023, 35, 4772 |
53. | S. D. Sharma, K. Bayikadi, S. Raman, S. Neeleshwar, Nanotechnology, 2020, 31, 365402 |
54. | A. Ashfaq, A. Ali, K. Mahmood, U. u. Rehman, S. Tahir, N. Amin, W. Ahmad, R. N. Aslam, M. Arshad, K. Rasheed, Ceram. Int., 2021, 47, 35356 |
55. | E. Isotta, C. Fanciulli, N. M. Pugno, P. Scardi, Nanomaterials, 2019, 9, 762 |
56. | A. Nagaoka, K. Yoshino, T. Masuda, T. D. Sparks, M. A. Scarpulla, K. Nishioka, J. Mater. Chem. A, 2021, 9, 15595 |
57. | Q. Chen, G. Wang, A. Zhang, D. Yang, W. Yao, K. Peng, Y. Yan, X. Sun, A. Liu, G. Wang, X. Zhou, J. Mater. Chem. C, 2015, 3, 12273 |
58. | J. Jacob, H. T. Ali, A. Ali, K. Mehboob, A. Ashfaq, S. Ikram, U. Rehman, K. Mahmood, N. Amin, Mater. Sci. Semicond. Process., 2021, 123, 105587 |
59. | C. Xiao, K. Li, J. Zhang, W. Tong, Y. Liu, Z. Li, P. Huang, B. Pan, H. Su, Y. Xie, Mater. Horiz., 2014, 1, 81 |
60. | T. Huo, F. Mehmood, H. Wang, W. Su, X. Wang, T. Chen, K. Zhang, J. Feng, C. Wang, Phys. Status Solidi A, 2020, 217, 2000198 |
61. | H. Xie, X. Su, X. Zhang, S. Hao, T. P. Bailey, C. C. Stoumpos, A. P. Douvalis, X. Hu, C. Wolverton, V. P. Dravid, C. Uher, X. Tang, M. G. Kanatzidis, J. Am. Chem. Soc., 2019, 141, 10905 |
62. | Q. Song, P. Qiu, H. Chen, K. Zhao, D. Ren, X. Shi, L. Chen, ACS Appl. Mater. Interfaces, 2018, 10, 10123 |
63. | Y. Zhu, Y. Liu, G. Ren, X. Tan, M. Yu, Y. Lin, C. Nan, A. Marcelli, T. Hu, W. Xu, Inorg. Chem., 2018, 57, 6051 |
64. | C. P. Heinrich, T. W. Day, W. G. Zeier, G. J. Snyder, W. Tremel, J. Am. Chem. Soc., 2014, 136, 442 |
65. | Y. Sun, A. Abbas, H. Wang, C. Tan, Z. Li, Y. Zong, H. Sun, C. Wang, H. Wang, Chem. Eng. J., 2024, 486, 150158 |
66. | F. Fan, B. Yu, Y. Wang, Y. Zhu, X. Liu, S. Yu, Z. Ren, J. Am. Chem. Soc., 2011, 133, 15910 |
67. | K. Wei, G. S. Nolas, ACS Appl. Mater. Interfaces, 2015, 7, 9752 |
68. | Q. Chen, Y. Yan, H. Zhan, W. Yao, Y. Chen, J. Dai, X. Sun, X. Zhou, J. Materiomics, 2016, 2, 179 |
69. | H. Nautiyal, K. Lohani, B. Mukherjee, E. Isotta, M. A. Malagutti, N. Ataollahi, I. Pallecchi, M. Putti, S. T. Misture, L. Rebuffi, P. Scardi, Nanomaterials, 2023, 13, 366 |
70. | B. Mukherjee, E. Isotta, M. A. Malagutti, K. Lohani, L. Rebuffi, C. Fanciulli, P. Scardi, J. Alloys Compd., 2023, 933, 167756 |
71. | Y. Zhu, Y. Liu, X. Tan, G. Ren, M. Yu, T. Hu, A. Marcelli, W. Xu, AIP Adv., 2018, 8, 045218 |
72. | R. Basu, S. Mandava, A. Bohra, S. Bhattacharya, R. Bhatt, S. Ahmad, K. Bhattacharyya, S. Samanta, A. K. Debnath, A. Singh, D. K. Aswal, K. P. Muthe, S. C. Gadkari, J. Electron. Mater., 2019, 48, 2120 |
73. | J. E. El Hamdaoui, M. Kria, K. Lakaal, M. El-Yadri, E. M. Feddi, L. P. Pedraja Rejas, L. M. Pérez, P. Díaz, M. E. Mora-Ramos, D. Laroze, Int. J. Mol. Sci., 2022, 23, 12785 |
74. | W. G. Zeier, A. LaLonde, Z. M. Gibbs, C. P. Heinrich, M. Panthöfer, G. J. Snyder, W. Tremel, J. Am. Chem. Soc., 2012, 134, 7147 |
75. | V. P. Kumar, E. Guilmeau, B. Raveau, V. Caignaert, U. V. Varadaraju, J. Appl. Phys., 2015, 118, 155101 |
76. | R. Chetty, J. Dadda, J. de Boor, E. Müller, R. C. Mallik, Intermetallics, 2015, 57, 156 |
77. | M. Ibáñez, R. Zamani, A. LaLonde, D. Cadavid, W. H. Li, A. Shavel, J. Arbiol, J. R. Morante, S. Gorsse, G. J. Snyder, A. Cabot, J. Am. Chem. Soc., 2012, 134, 4060 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The development of quaternary diamondoid thermoelectric materials. a Structure of quaternary diamondoid thermoelectric materials. b Current state of the art quaternary diamondoid thermoelectric materials, the figure-of-merit ZT as a function of temperature and the published time.
The influence of different cation vacancies on thermoelectric transport properties for Cu2ZnSnSe4. a Schematic diagram of different cation vacancies in Cu2ZnSnSe4. Temperature dependence of b Electric conductivity (σ) and c Lattice thermal conductivity (κl). d The room temperature of carrier concentration (pH) and mobility(μH) for different samples. e Total thermal conductivity (κtot) as a function of temperature.
The influence of different defects on carrier transport in Cu2FeSnSe4. a Defect formation energy of Cu-poor conditions. b Defect formation energy of Cu-rich conditions. Schematic diagram of charge carriers scattering by c VCu vacancy and d CuFe anti-site defect. e The room temperature carrier concentration (pH) and mobility (μH) for Cu2+xFe1-xSnSe4. f Electric conductivity (σ) as a function of temperature for Cu2+xFe1-xSnSe4.
Introducing graphene to improve the electrical transport performance of Cu2ZnSnS4. a Schematic diagram shows the microstructure of sample. b SEM micrographs and TEM image of Cu2ZnSnS4/0.75 wt% GNs composite powder. c The room temperature carrier concentration (pH) and mobility (μH) of graphene doped samples. d Temperature dependence of electric conductivity (σ).
The influence of ordered and disordered structure on electrical transport performance of Cu2ZnSnS4. Temperature dependence of a Seebeck coefficient (S) and b electric conductivity (
The crystal structure and transport properties of Cu2ZnSnS4. a The crystal structures of ordered and disordered Cu2ZnSnS4. b Pseudo-cubic structure shows the crystal structure parameter η (c/2a) ≈ 1. c The valence bands for the ordered and disordered Cu2ZnSnS4. d Temperature dependence of ZT for Cu2ZnSnS4 single crystals with different composition.
The influence of lattice strain on thermal conductivity. a The TEM image of Cu2MnSnSe4 showing the stacking faults in the matrix.b SAED pattern of Cu2MnSnSe4 along [1-1-1] direction. c The IFFT image showing dislocation in the material. d The corresponding strain mapping of Cu2MnSnSe4 lattice. e The lattice thermal conductivity (κl) and lattice strain of Cu2MnSnSe4. f Temperature dependence of total thermal conductivity (κtot) of Cu2MnSnSe4.
Morphology and thermal properties of nanocomposite materials. a The morphology of fracture surface for Cu2CdSnSe4 matrix and the nanocomposite. Temperature dependence of b total thermal conductivity (κtot) and c lattice thermal conductivity (κl) for Cu2CdSnSe4 nanocomposite materials.
The structure and thermal properties of Cu2ZnSn1-xPbxSe4. a SEM image of Cu2ZnSn1-xPbxSe4. b Schematic diagram of secondary phase boundary scattering. Temperature dependence of c total thermal conductivity (κtot) and d lattice thermal conductivity (κl) of Cu2ZnSn1-xPbxSe4.