Citation: | Xiyu Wang, Lingling Zhang, Zijian Wang, Xiao Wang, Shuyan Song, Hongjie Zhang. Recent strategies for switching the catalytic selectivity in CO2 hydrogenation[J]. Materials Lab, 2024, 3(3): 240004. doi: 10.54227/mlab.20240004 |
Thermal catalysis is vital for converting carbon dioxide during hydrogenation into high-value-added chemicals. However, the intricate network of reaction pathways and intermediates leads to a diverse array of CO2 hydrogenation products, making achieving high selectivity difficult. Furthermore, in practical applications, changes to the catalyst induced by various factors can significantly alter its properties, resulting in a sudden shift in product selectivity, often referred to as selectivity reversal. Therefore, investigating the factors contributing to this selectivity reversal is essential for establishing a theoretical basis for regulating selectivity in CO2 hydrogenation. This paper reviews the factors influencing selectivity reversal, such as heteroatom modification, metal-support interactions (MSI), changes in the size of the active component, and intermetallic electronic interactions. Additionally, strategies to modulate the selectivity of CO2 hydrogenation are discussed. In conclusion, by exploring catalyst selectivity reversal and presenting methods to manipulate the selectivity of CO2 hydrogenation, this paper offers a guiding framework for the targeted design of catalysts and the precise modulation of CO2 hydrogenation products.
1. | J. Hu, Y. Cai, J. Xie, D. Hou, L. Yu, D. Deng, Chem, 2024, 10, 1084 |
2. | M. Z. Chishti, S. Ullah, I. Ozturk, A. Usman, Environ. Sci. Pollut. Res., 2020, 27, 27721 |
3. | M. Tawalbeh, M. Al-Ismaily, B. Kruczek, F. H. Tezel, Chemosphere, 2021, 263, 127935 |
4. | J. Yang, W. Cai, M. Ma, L. Li, C. Liu, X. Ma, L. Li, X. Chen, Sci. Total Environ., 2020, 711, 134569 |
5. | R. Ahmed, G. Liu, B. Yousaf, Q. Abbas, H. Ullah, M. U. Ali, J. Cleaner Prod., 2020, 242, 118409 |
6. | T. R. Knutson, R. E. Tuleya, J. Clim., 2004, 17, 3477 |
7. | X. T. Wu, X. W, L. L. Zhang, X. M. Wang, S. Y. Song, H. J. Zhang, Angew. Chem. Int. Ed, 2024, 63, e202317594 |
8. | H. Wang, M. Bootharaju, J. Kim, Y. Wang, K. Wang, M. Zhao, R. Zhang, J. Xu, T. Hyeon, X. Wang, S. Song, H. Zhang, J. Am. Chen. Soc., 2023, 145, 2264 |
9. | Z. Wang, W. Huang, H. Wang, J. Gao, R. Zhang, G. Xu, Z. Wang, J. Cleaner Prod., 2024, 434, 140365 |
10. | T. Li, X. Meng, F. Jia, L. Chen, L. Wang, J. Cleaner Prod., 2023, 418, 138115 |
11. | D. Patnaik, A. K. Pattanaik, D. K. Bagal, A. Rath, Int. J. Hydrogen Energy, 2023, 48, 23449 |
12. | A. Bhavsar, D. Hingar, S. Ostwal, I. Thakkar, S. Jadeja, M. Shah, Case Stud. Chem. Environ. Eng., 2023, 8, 100368 |
13. | A. S. Varling, T. H. Christensen, V. Bisinella, Waste Management, 2023, 157, 168 |
14. | B. Dziejarski, R. Krzyżyńska, K. Andersson, Fuel, 2023, 342, 127776 |
15. | S. Nagireddi, J. R. Agarwal, D. Vedapuri, ACS Eng. Au, 2024, 4, 22 |
16. | L. Fu, Z. Ren, W. Si, Q. Ma, W. Huang, K. Liao, Z. Huang, Y. Wang, J. Li, P. Xu, J. CO2 Util., 2022, 66, 102260 |
17. | A. Yagmur Goren, D. Erdemir, I. Dincer, Environ. Res., 2024, 240, 117503 |
18. | H. A. Baalbaki, H. Roshandel, J. E. Hein, P. Mehrkhodavandi, Catal. Sci. Technol., 2021, 11, 2119 |
19. | G. Hu, Z. Li, D. Ma, C. Ye, L. Zhang, C. Gao, L. Liu, X. Chen, Nat. Catal., 2021, 4, 395 |
20. | J. Godin, W. Liu, S. Ren, C. C. Xu, J. Environ. Chem. Eng., 2021, 9, 105644 |
21. | W. Fei, D. David, Minerals and Mineral Materials, 2022, 1, 4 |
22. | S. Schlager, A. Fuchsbauer, M. Haberbauer, H. Neugebauer, N. S. Sariciftci, J. Mater. Chem. A, 2017, 5, 2429 |
23. | P. Tcvetkov, A. Cherepovitsyn, S. Fedoseev, Sustainability, 2019, 11, 5834 |
24. | S. Fang, M. Rahaman, J. Bharti, E. Reisner, M. Robert, G. A. Ozin, Y. H. Hu, Nat. Rev. Methods Primers, 2023, 3, 61 |
25. | W. Jiang, H. Loh, B. Q. L. Low, H. Zhu, J. Low, J. Z. X. Heng, K. Y. Tang, Z. Li, X. J. Loh, E. Ye, Y. Xiong, Appl. Catal. B, 2023, 321, 122079 |
26. | T. Lu, T. Xu, S. Zhu, J. Li, J. Wang, H. Jin, X. Wang, J. J. Lv, Z. J. Wang, S. Wang, Adv. Mater., 2023, 35, 2310433 |
27. | Z.-H. He, C.-C. Li, S.-Y. Yang, J. Liu, H.-H. Cao, K. Wang, W. Wang, Y. Yang, Z.-T. Liu, Catal. Sci. Technol., 2023, 13, 6675 |
28. | H. Cao, Y. Li, Q. Hu, J. Wu, L. Ji, J. Mater. Chem. A, 2023, 11, 19645 |
29. | J. Gao, S. C. S. Shiong, Y. Liu, Chem. Eng. J., 2023, 145033 |
30. | Y. He, L. Yin, N. Yuan, G. Zhang, Chem. Eng. J., 2024, 481, 148754 |
31. | G. Liao, G. Ding, B. Yang, C. Li, Precis. Chem., 2024, 2, 49 |
32. | D. Yang, X. Wang, SmartMat, 2022, 3, 54 |
33. | J. Lin, Y. Zhang, P. Xu, L. Chen, Mater. Rep.: Energy, 2023, 3, 100194 |
34. | X. She, Y. Wang, H. Xu, S. Chi Edman Tsang, S. Ping Lau, Angew. Chem. Int. Ed. Engl., 2022, 61, e202211396 |
35. | J. Gao, S. Choo Sze Shiong, Y. Liu, Chem. Eng. J., 2023, 472, 145033 |
36. | S. Roy, A. Cherevotan, S. C. Peter, ACS Energy Lett., 2018, 3, 1938 |
37. | N. Yusuf, F. Almomani, H. Qiblawey, Fuel, 2023, 345, 128178 |
38. | N. S. Featherstone, E. van Steen, Catal. Today, 2023, 423, 113951 |
39. | Y. Wang, L. R. Winter, J. G. Chen, B. Yan, Green Chem., 2021, 23, 249 |
40. | W. J. Lee, C. Li, H. Prajitno, J. Yoo, J. Patel, Y. Yang, S. Lim, Catal. Today, 2021, 368, 2 |
41. | P. H. Yan, H. Peng, J. Vogrin, H. Rabiee, Z. H. Zhu, J. Mater. Chem. A, 2023, 11, 17938 |
42. | T. Fan, H. Liu, S. Shao, Y. Gong, G. Li, Z. Tang, J. Phys. Chem. Lett., 2021, 12, 10486 |
43. | C. Yin, Q. Li, J. Zheng, Y. Ni, H. Wu, A.-L. Kjøniksen, C. Liu, Y. Lei, Y. Zhang, Advanced Powder Materials, 2022, 1, 100055 |
44. | C. Han, Y. Gao, L. Qin, Y. Cao, S. Wang, J. Li, Sep. Purif. Technol., 2025, 354, 128852 |
45. | Y. Jiang, J. Lang, X. Wu, Y. H. Hu, Catal. Today, 2020, 356, 570 |
46. | R. Yao, B. Wu, Y. Yu, N. Liu, Q. Niu, C. Li, J. Wei, Q. Ge, Appl. Catal. B-Environ., 2024, 355, 124159 |
47. | F. Lin, X. Jiang, N. Boreriboon, Z. Wang, C. Song, K. Cen, Appl. Catal. A, 2019, 585, 117210 |
48. | A. Parastaev, V. Muravev, E. Huertas Osta, A. J. van Hoof, T. F. Kimpel, N. Kosinov, E. J. Hensen, Nat. Catal., 2020, 3, 526 |
49. | Y. Xie, J. Wen, Z. Li, J. Chen, Q. Zhang, P. Ning, J. Hao, ACS Mater. Lett., 2023, 5, 2629 |
50. | C. Zhang, L. Wang, Y. Chen, X. He, Y. Song, O. M. Gazit, Z. Zhong, Chem. Eng. J., 2023, 475, 146102 |
51. | C. Meng, G. Zhao, X.-R. Shi, Q. Nie, Y. Liu, Y. Lu, Appl. Catal. B, 2022, 316, 121699 |
52. | B. Yang, Y. Wang, L. Li, B. Gao, L. Zhang, L. Guo, Catal. Sci. Technol., 2022, 12, 1159 |
53. | C. Meng, G. Zhao, X.-R. Shi, P. Chen, Y. Liu, Y. Lu, Sci. Adv., 2021, 7, eabi6012 |
54. | X. Wang, H. Zhang, H. Qin, K. Wu, K. Wang, J. Ma, W. Fan, Fuel, 2023, 346, 128381 |
55. | Y. Yang, X. Zhu, L. Wang, J. Lang, G. Yao, T. Qin, Z. Ren, L. Chen, X. Liu, W. Li, Y. Wan, Nat. Commun., 2022, 13, 2754 |
56. | X. Zhang, M. Zhang, Y. Deng, M. Xu, L. Artiglia, W. Wen, R. Gao, B. Chen, S. Yao, X. Zhang, M. Peng, J. Yan, A. Li, Z. Jiang, X. Gao, S. Cao, C. Yang, A. J. Kropf, J. Shi, J. Xie, M. Bi, J. A. van Bokhoven, Y. -W. Li, X. Wen, M. Flytzani-Stephanopoulos, C. Shi, W. Zhou, D. Ma, Nature, 2021, 589, 396 |
57. | T.-N. Ye, S.-W. Park, Y. Lu, J. Li, M. Sasase, M. Kitano, T. Tada, H. Hosono, Nature, 2020, 583, 391 |
58. | T. He, W. Wang, F. Shi, X. Yang, X. Li, J. Wu, Y. Yin, M. Jin, Nature, 2021, 598, 76-81 |
59. | J. M. Crawford, B. E. Petel, M. J. Rasmussen, T. Ludwig, E. M. Miller, S. Halingstad, S. A. Akhade, S. H. Pang, M. M. Yung, Appl. Catal. , A, 2023, 663, 119292 |
60. | C. Wu, J. Shen, X. An, Z. Wu, S. Qian, S. Zhang, Z. Wang, B. Song, Y. Cheng, B. Yan, T.-K. Sham, X. Zhang, C. Li, K. Feng, L. He, ACS Catal., 2024, 14, 8592 |
61. | S. Bao, T. Liu, H. Fu, Z. Xu, X. Qu, S. Zheng, D. Zhu, ACS Appl. Mater. Interfaces, 2023, 15, 45949 |
62. | X. Wei, G. Johnson, Y. Ye, M. Cui, S.-W. Yu, Y. Ran, J. Cai, Z. Liu, X. Chen, W. Gao, P. J. L. Bean, W. Zhang, T. Y. Zhao, F. A. Perras, E. J. Crumlin, X. Zhang, R. J. Davis, Z. Wu, S. Zhang, J. Am. Chem. Soc., 2023, 145, 14298 |
63. | J. Zhang, M. Gao, R. Wang, X. Li, T. Huang, J. Wang, Y. Wang, Z. Zheng, Nano Res., 2023, 16, 4786 |
64. | J. Wang, K. Liu, J. Zhao, X. Li, B. Yin, B. Jiang, H. Li, RSC Adv., 2024, 14, 6502 |
65. | M. Chen, L. G. Liu, X. Y. Chen, X. X. Qin, J. H. Zhang, S. H. Xie, F. D. Liu, H. He, C. B. Zhang, Nat. Commun., 2024, 15, 9478 |
66. | F. Yang, T. Zhang, J. Zhao, J. Xiao, W. Zhou, J. Catal., 2024, 429, 115242 |
67. | Y. Xie, J. Chen, J. Wen, Z. Li, F. Cao, S. Zhang, Q. Sun, P. Ning, Q. Zhang, J. Hao, ACS Catal., 2024, 14, 12214 |
68. | S. Li, Y. Xu, H. Wang, B. Teng, Q. Liu, Q. Li, L. Xu, X. Liu, J. Lu, Angew. Chem. Int. Ed., 2023, 62, e202218167 |
69. | M. Shi, G. Ren, Z. Zhang, Z. Li, X. Meng, Sol. Energy, 2023, 261, 33-42 |
70. | F. Qi, J. Peng, Z. Liang, J. Guo, J. Liu, T. Fang, H. Mao, Environ. Sci. Ecotechnology, 2024, 22, 100443 |
71. | J. Wang, D. Cheng, M. Gao, Q. Li, Y. Xin, N. Zhang, Z. Zhang, X. Yu, Z. Zhao, K. Zhou, Chem. Sci., 2021, 12, 3245 |
72. | M. Nie, A. Cui, M. Wu, T. Guo, Q. Guo, J. CO2 Util., 2023, 75, 102579 |
73. | C.-S. Chen, T.-C. Chen, J. H. Wu, H.-C. Wu, C.-M. Yang, T.-C. Yang, C.-W. Pao, Chem. Eng. J., 2024, 489, 151198 |
74. | J. Zhang, S. Deo, M. J. Janik, J. W. Medlin, J. Am. Chem. Soc., 2020, 142, 5184 |
75. | Z. Xie, S. Hwang, J. G. Chen, SmartMat., 2023, 4, e1201 |
76. | Y. Zhang, Z. Zhang, X. Yang, R. Wang, H. Duan, Z. Shen, L. Li, Y. Su, R. Yang, Y. Zhang, X. Su, Y. Huang, T. Zhang, Green Chem., 2020, 22, 6855 |
77. | W. Zhang, H. Lin, Y. Wei, X. Zhou, Y. An, Y. Dai, Q. Niu, T. Lin, L. Zhong, ACS Catal., 2024, 14, 2409 |
78. | H. Xin, L. Lin, R. Li, D. Li, T. Song, R. Mu, Q. Fu, X. Bao, J. Am. Chem. Soc., 2022, 144, 4874 |
79. | J. Zhao, X. Liu, Z. Li, K. Feng, Y. Pan, P. Ji, K. Zhao, B. Yan, D. Zhou, D. Su, ACS Catal., 2024, 14, 3158 |
80. | Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang, Z.-C. Huang, Y.-Z. Zheng, F.-Y. Mu, R. Huang, G.-Y. Shi, Y.-Y. Sun, X.-H. Xia, W. Chen, Nat. Commun., 2021, 12, 3021 |
81. | M. Shekhar, J. Wang, W.-S. Lee, W. D. Williams, S. M. Kim, E. A. Stach, J. T. Miller, W. N. Delgass, F. H. Ribeiro, J. Am. Chem. Soc., 2012, 134, 4700 |
82. | L. Liu, A. Corma, Chem. Rev., 2018, 118, 4981 |
83. | B. Yang, Y. Wang, B. Gao, L. Zhang, L. Guo, ACS Catal., 2023, 13, 10364 |
84. | X. Y. Li, J. Lin, L. Li, Y. K. Huang, X. L. Pan, S. E. Collins, Y. J. Ren, Y. Su, L. L. Kang, X. Y. Liu, Y. L. Zhou, H. Wang, A. Q. Wang, B. T. Qiao, Xiaodong Wang, Tao Zhang, Angew. Chem. Int. Ed, 2020, 59, 19983 |
85. | B. Han, Q. Li, X. Jiang, Y. Guo, Q. Jiang, Y. Su, L. Li, B. Qiao, Small, 2022, 18, 2204490 |
86. | S. K. Liu, Q. Zhao, X. U. Han, C. Y. Wei, H. T. Liang, Y. D. Wang, S. Y. Huang, X. B. Ma, Trans. Tianjin Univ., 2023, 29, 293 |
87. | C. Dong, R. Mu, R. Li, J. Wang, T. Song, Z. Qu, Q. Fu, X. Bao, J. Am. Chem. Soc., 2023, 145, 17056 |
88. | S. X. Lin, Z. H. Li, M. S. Li, Fuel, 2023, 333, 126369 |
89. | C. S. Yang, C. L. Pei, R. Luo, S. H. Liu, Y. N. Wang, Z. Y. Wang, Z. J. Zhao, J. L. Gong, J. Am. Chem. Soc., 2020, 142, 19523 |
90. | J. Zhou, Z. Gao, G. L. Xiang, T. Y. Zhai, Z. K. Liu, W. X. Zhao, X. Liang, L. Y. Wang, Nat. Commun., 2022, 13, 327 |
91. | Z. Y. Zhao, M. Z. Wang, P. J. Ma, Y. P. Zheng, J. Y. Chen, H. Q. Li, X. B. Zhang, K. Zheng, Q. Kuang, Z. X. Xie, Appl. Catal. , B, 2021, 291, 120101 |
92. | Z. Han, C. Z. Tang, J. J. Wang, L. D. Li, C. Li, J. Catal., 2021, 394, 236-244 |
93. | H. Zheng, W. Q. Liao, J. Q. Ding, F. K. Xu, A. P. Jia, W. X. Huang, Z. H. Zhang, ACS Catal, 2022, 12, 15451 |
94. | W. Q. Liao, C. Tang, H. Zheng, J. Q. Ding, K. F. Zhang, H. W. Wang, J. Q. Lu, W. X. Huang, Z. H. Zhang, J. Catal., 2022, 407, 126 |
95. | J. Zhang, T. F. Huang, R. Y. Wang, X. C. Li, J. Wang, H. Ge, J. Ren, Y. W. Wang, Z. F. Zheng, New J. Chem., 2023, 47, 11774 |
96. | Y. J. Guo, L. Y. Jia, Z. Z. Zhang, M. Z. Gong, S. S. Dang, Y. Q. Huang, X. H. Gao, W. F. Tu, Y. F. Han, Chem. Eng. J., 2024, 491, 151964 |
97. | S. N. Zhang, Z. X. Wu, X. F. Liu, Z. L. Shao, L. Xia, L. S. Zhong, H. Wang, Y. H. Sun, Appl. Catal. B, 2021, 293, 120207 |
98. | G. Varvoutis, M. Lykaki, E. Papista, S. A. Carabineiro, A. C. Psarras, G. E. Marnellos, M. Konsolakis, J. CO2 Util., 2021, 44, 101408 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Possible reaction pathway for forming other molecules from carbon dioxide.
a Calculation of H2 adsorption energy on Ru and Ru2P surfaces. b Gibbs free energy for migration of adsorbed H atoms. c Schematic diagram for the ‘fence effect’ of P on the migration of active H species and consequent changes in the CO2 hydrogenation selectivity. d Catalytic performance in long-term stability tests.[60] Copyright 2024, ACS Publications.
Catalytic performances of the TiO2-supported a Ni-4.2 and b Ni-P-4.2 catalysts for CO2 hydrogenation as a function of temperature (1 vol % CO2 + 4 vol % H2 + 95 vol % N2 with a space velocity of ~30,000 mL gcat–1 h–1 at ambient pressure). c Comparison of activity and selectivity on various catalysts before and after secondary P modification (1 vol % CO2 + 4 vol % H2 + 95 vol % N2 at ambient pressure, 400 °C).[62] Copyright 2023, ACS Publications. Catalytic performances of Ru/TiO2-x catalysts for CO2 hydrogenation at d 200 °C, e 250 °C, and f 300 °C.[63] Copyright 2024, Springer Link.
a Conversion rate, selectivity, and space-time yield (STY) with x% CoB/ZSM-5 catalysts and reference sample at different reaction temperatures. b Modification of Co nanoparticles with B atoms achieves selective reversal from CH4 to CO.[64] Copyright 2024, RSC Publishing. c The product selectivity on Ru/Ti-S catalyst with air and/or H2 pretreatment at 350 °C. d Schematic illustration of the mechanisms of CO2 hydrogenation on sulfate-free and sulfate-containing Ru/TiO2 catalysts.[65] Copyright 2024, Springer Nature.
a Effect of Sn addition on the product selectivity at ~15 % CO2 conversion level. Reaction conditions: T = 400 °C, P = 1 atm, GHSV was varied to obtain a similar CO2 conversion level of ~15 %. b Arrhenius plots for CH4 formation derived from CO2 + H2-TPSR at CO2 conversion <10 %.[66] Copyright 2023, Elsevier. CO2 hydrogenation performance evaluation over c Ru/CeO2, d Ru/Ce0.98Bi0.02Ox, e Ru/Ce0.99Bi0.01Ox, and f Ru/Ce0.97Bi0.03Ox. Reaction conditions: feed gas, CO2/H2 = 1/4; mcat = 150 mg, GHSV = 20,000 mL g–1 h–1.[67] Copyright 2024, ACS Publications.
The CO2 conversion and product selectivity of a Rh1/ZrO2 and b 1Na-Rh1/ZrO2 at different temperatures. Reaction conditions: catalyst, 100 mg; pressure, 1 MPa; feed gas, CO2/H2/Ar=24/72/4; WHSV, 18 000 mL gcat−1 h−1. Equilibrium conversions (dotted lines) as a function of temperature are plotted. c reaction mechanism. Na ions change the surface intermediate from HCOO* to COOH* and render the Rh atoms electron deficient with restrained H2 activation capability and weakened CO adsorption, thus cooperatively boosting CO formation.[68] Copyright 2022, Wiley.
a Comparison of CO2 hydrogenation as a function of temperature on the Ni0.5SiO2 and Ni0.5Zrx/SiO2 catalysts in terms of the overall CO2 conversion.[73] Copyright 2024, Elsevier. Schemes showing: b CO selectivity with time on stream at different temperatures. black: 5%Pt/TiO2, red: NH2MPA/5%Pt/TiO2, yellow: BZPA/5%Pt/TiO2, blue: MPA/5%Pt/TiO2, catalyst loadings were kept at 80 mg for each case.[74] Copyright 2020, ACS Publications.
HRTEM images of the series of Ir/TiO2-x catalysts: a Ir/TiO2-200, b Ir/TiO2-400, c Ir/TiO2-600, and d Ir/TiO2-700. e Catalytic performance of the series of Ir/TiO2-x catalysts for CO2 hydrogenation reactions. Reaction conditions: 280 °C, 0.1 MPa, space velocity =
Catalytic performance of various fresh Ru-based catalysts for CO2 hydrogenation. CO2 conversion and product selectivity of a Ru/a-TiO2 and b a-TiO2. Reaction conditions: 1.0 g, 1 MPa, and CO2/H2/Ar = 24/73/3,
Catalytic performance evolution of the Ru–Mo–oxide catalysts in CO2 hydrogenation. a Fresh 1.9 wt % Ru-Mo-Ox catalyst. b Spent catalyst after the reaction in a (1.9 wt %Ru-Mo-Ox-spent). c Spent catalyst calcined in O2 at 500 °C for 1 h (1.9 wt % Ru-Mo-Ox-recal). d Catalysts after the reaction in c (1.9 wt %Ru-Mo-Ox-recal.-spent). Reaction conditions: 50 mg of catalyst, 3% CO2/9% H2/N2, and WHSV = 10,000 mL gcatal-1 h-1. Catalytic performance of fresh 1.9 wt % Ru–Mo-Ox catalyst at 250 °C. e Selectivity changes in Ru/TiO2 catalysts.[78] Copyright 2022, ACS Publications.
a Schematic illustration of the Ni/Sm2O3 catalyst reduction process and the RWGS reaction. b Catalytic performance in CO2 hydrogenation under three start-up/shut–down cycles. Conversion rate and selectivity of the Ni/Sm2O3 catalyst. c Schematic illustration of the post-annealing process and CO2 methanation reaction over Ni/Sm2O3 catalyst. d Catalytic performance of CO2 methanation using Ni/Sm2O3 catalysts for three start-up/shut-down cycles.[79] Copyright 2024, ACS Publications.
a Influence of metal size on catalyst selectivity.[83] Copyright 2023, ACS Publications. b,d,f SMSI overlayer structures and catalytic performance of c Rh/TiO2-LTR, e Rh/TiO2-HTR and g Rh/TiO2-HTR-O in CO2 hydrogenation. Black open cycles represent CO2 conversion. Reaction conditions: P = 1 atm, 30 mg of catalyst, 4 vol% CO2 + 16 vol% H2 + 4 vol% N2 + He balance (N2 as internal standard, total flow rate = 30 mL min−1).[85] Copyright 2022, Wiley.
a CH4 selectivity versus TOS of the Co3O4, Co3O4||ZnO, Co3O4|ZnO, Co3O4- ZnO and Pt/Co3O4 catalysts in CO2 hydrogenation. Reaction conditions: CO2/H2 = 1:3, P = 1 atm, T = 350 °C, WHSV = 32,000 mL gCo3O4-1 h-1. b Schematic display of the proximity.[87] Copyright 2023, ACS Publications.
Catalytic performance over Ni/CeO2 catalysts. a CO2 conversion and b CH4/CO selectivity as a function of reaction temperature (T = 473-623 K) Reaction conditions: T reduced = 723 K, P = 0.1 MPa, WHSV = 36 L g-1 h-1.[88] Copyright 2023, Elsevier.
a Simplified models showing the main reaction mechanism on In2O3/t-ZrO2 and In2O3/m-ZrO2. b Product distribution for CO2 hydrogenation over different catalysts. Methanol selectivity: solid bar, CO selectivity: shaded bar.[89] Copyright 2020, ACS Publications. c Temperature-dependent CH4 selectivity. d Summary scheme of varied activity and selectivity by direct H2 reduction and after annealing in air. Ru/TiO2–H2 refers to directly reduced catalysts by H2, while Ru/TiO2–air–H2 refers to catalysts by annealing in air at 400 °C and further reduction by H2.[90] Copyright 2022, Springer Nature.
a-b Temperature programmed RWGS reaction over Pt/CeO2 catalysts.[91] Copyright 2021, Elsevier. c Methanol and CO selectivity of the catalysts. All the catalysts were tested under conditions of T = 300 °C, P = 2 MPa, and SV = 24,000 mL h−1 gcat−1.[92] Copyright 2021, Elsevier. d Catalytic activity and product selectivity of CO2 hydrogenation over various Ni/CeO2 catalysts at 290 °C.[93] Copyright 2022, ACS Publications.
a Catalytic performances of Ru/TiO2 catalysts modified by various anions for CO2 hydrogenation at 300 °C.[95] Copyright 2023, RSC Publishing. b The catalytic activities of catalysts with different Ce contents.[96] Copyright 2024, Elsevier. c Alcohol distribution and ethanol STY. Catalytic performance under the conditions of 250 °C, 5 MPa, WHSV =