Citation: | Li Zeng, Yiyu Fang, Dan Luo, Dayue Du, Sijiang Hu, Hanna He, Chuhong Zhang. 3D-printing of patterned Zn anodes toward dendrite-free zinc ion batteries[J]. Materials Lab, 2024, 3(3): 240007. doi: 10.54227/mlab.20240007 |
3D Zn anodes, boasting a high specific surface area to reduce the local current density, have emerged as promising electrodes for dendrite-free Zn-ion batteries (ZIBs). Despite their potential, the impact of diverse topological structures of Zn anodes on Zn deposition behavior within these electrodes remains poorly understood. To elucidate this relationship, this study employed direct ink writing technology to 3D print Zn anodes with four distinct topological configurations. The 3D array Zn anode featured with an angle between two connected printing strips of 180° (3DP-180) stood out for the fewest electrode joint points among these four anodes, migrating the tip effect and facilitating uniform electric field/ion distribution, which in turn promoted even Zn deposition and effectively suppressed Zn dendrites. The 3DP-180 array anode demonstrated a notably low nucleation overpotential of 27.2 mV, indicating a superior capacity for Zn nucleation and uniform Zn deposition. Moreover, symmetrical cell assembled with 3DP-180 array anode achieved 800 hours of continuous cycling without degradation at a current density of 1 mA cm−2 and a capacity of 0.5 mAh cm−2. These results highlight the improved cycle lifespan afforded by the superior structural design of Zn anodes, offering valuable insights to inform the development of next-generation durable and safe ZIBs.
1. | R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong, Y. Dai, Z. Du, Z. Zhang, J. Li, F. Guo, Nano-Micro Letters, 2023, 15, 81 |
2. | J. Bae, S. Oh, B. Lee, C. H. Lee, J. Chung, J. Kim, S. Jo, S. Seo, J. Lim, S. Chung, Energy Storage Materials, 2023, 57, 277 |
3. | Y. Mei, J. Zhou, B. Zhang, L. Li, F. Wu, Y. Huang, R. Chen, SusMat, 2024, 4, e197 |
4. | J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S. Z. Qiao, Advanced Materials, 2022, 34, 2206963 |
5. | X. Wang, C. Sun, Z. S. Wu, SusMat, 2023, 3, 180 |
6. | L. Zeng, H. He, H. Chen, D. Luo, J. He, C. Zhang, Advanced Energy Materials, 2022, 12, 2103708 |
7. | M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong, G. Lu, F.-Q. Bai, X.-Y. Lang, X. Jia, D. Chao, Nano-Micro Letters, 2022, 14, 219 |
8. | X. Long, Y. Liu, D. Wang, Y. Nie, X. Lai, D. Luo, X. Wang, Journal of Materials Chemistry A, 2024, 12, 13181 |
9. | L. Zeng, J. He, C. Yang, D. Luo, H. Yu, H. He, C. Zhang, Energy Storage Materials, 2023, 54, 469 |
10. | F. Tao, Y. Liu, X. Ren, J. Wang, Y. Zhou, Y. Miao, F. Ren, S. Wei, J. Ma, Journal of Energy Chemistry, 2022, 66, 397 |
11. | J. Zheng, Z. Huang, F. Ming, Y. Zeng, B. Wei, Q. Jiang, Z. Qi, Z. Wang, H. Liang, Small, 2022, 18, 2200006 |
12. | A. Naveed, H. Yang, Y. Shao, J. Yang, N. Yanna, J. Liu, S. Shi, L. Zhang, A. Ye, B. He, Advanced Materials, 2019, 31, 1900668 |
13. | W. Wang, Y. C. Lu, SusMat, 2023, 3, 146 |
14. | H. He, L. Zeng, D. Luo, J. He, X. Li, Z. Guo, C. Zhang, Advanced Materials, 2023, 35, 2211498 |
15. | N. Guo, W. Huo, X. Dong, Z. Sun, Y. Lu, X. Wu, L. Dai, L. Wang, H. Lin, H. Liu, Small Methods, 2022, 6, 2200597 |
16. | Y. Mu, Z. Li, B.-k. Wu, H. Huang, F. Wu, Y. Chu, L. Zou, M. Yang, J. He, L. Ye, Nature Communications, 2023, 14, 4205 |
17. | Y. Du, X. Chi, J. Huang, Q. Qiu, Y. Liu, Journal of Power Sources, 2020, 479, 228808 |
18. | X. Fan, H. Yang, X. Wang, J. Han, Y. Wu, L. Gou, D. L. Li, Y. L. Ding, Advanced Materials Interfaces, 2021, 8, 2002184 |
19. | Z. Kang, C. Wu, L. Dong, W. Liu, J. Mou, J. Zhang, Z. Chang, B. Jiang, G. Wang, F. Kang, ACS Sustainable Chemistry & Engineering, 2019, 7, 3364 |
20. | M. Zhang, Y. Su, G. Li, B. Tang, S. Zhou, X. Wang, D. Liu, G. Zhu, Journal of Power Sources, 2024, 589, 233755 |
21. | Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, Angewandte Chemie International Edition, 2019, 58, 15841 |
22. | X. Wu, Z. Yang, Q. Song, X. Sun, Y. Xu, M. Zhao, X. Li, Y. Yan, M. Chen, Chemical Engineering Journal, 2024, 497, 154395 |
23. | J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao, L. Li, R. Chen, Advanced Materials, 2022, 34, 2106897 |
24. | G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen, H. Duan, Advanced Energy Materials, 2021, 11, 2003927 |
25. | W. Kang, L. Zeng, S. Ling, C. Zhang, Advanced Energy Materials, 2021, 11, 2100020 |
26. | T. Chu, S. Park, K. Fu, Carbon Energy, 2021, 3, 424 |
27. | Y. Chang, Q. Cao, B. J. Venton, Current opinion in electrochemistry, 2023, 38, 101228 |
28. | J. Wang, Q. Sun, X. Gao, C. Wang, W. Li, F. B. Holness, M. Zheng, R. Li, A. D. Price, X. Sun, ACS applied materials & interfaces, 2018, 10, 39794 |
29. | L. Zeng, S. Ling, D. Du, H. He, X. Li, C. Zhang, Advanced Science, 2023, 10, 2303716 |
30. | C. Sun, S. Liu, X. Shi, C. Lai, J. Liang, Y. Chen, Chemical Engineering Journal, 2020, 381, 122641 |
31. | G. Zhu, H. Zhang, J. Lu, Y. Hou, P. Liu, S. Dong, H. Pang, Y. Zhang, Advanced Functional Materials, 2024, 34, 2305550 |
32. | X. Wang, G. Ding, Z. Ma, Z. Xu, Y. Feng, W. Gong, C. Liu, K. Tian, Z. Yong, Q. Li, Chemical Engineering Journal, 2023, 472, 144996 |
33. | S. Jiao, J. Fu, M. Wu, T. Hua, H. Hu, ACS nano, 2022, 16, 1013 |
34. | J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey, S. Qiao, Chemical Society Reviews, 2024, 53, 4312 |
35. | Q. Deng, Z. Zhao, Y. Wang, R. Wang, J. Wang, H. Zhang, L. Feng, R. Yang, ACS Applied Materials & Interfaces, 2022, 14, 14243 |
36. | J. Hao, L. Yuan, Y. Zhu, X. Bai, C. Ye, Y. Jiao, S. Qiao, Angewandte Chemie International Edition, 2023, 62, e202310284 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a The schematic illustration of the preparation process of 3D anodes. b Viscosity and c the modulus curves of the printable ink. d The SEM image of 3D Zn anode; inset: the SEM image of the pristine Zn powder. e The XRD pattern of the 3DP-180 anode and pristine Zn powder. f The contact angle of the 3DP-180 anode. g The N2 absorption/desorption isotherm of the 3DP-180 anode.
The SEM images and corresponding element mapping of these four different Zn anodes.
The COMSOL multiphysics simulation of Zn deposition on 3D Zn anodes with different topological structures.
a The voltage curve of the half-cells assembled with different 3D Zn anodes; b The coulombic efficiency of the 3DP-180 half-cell; c The cycling performance of the 3DP-180||3DP-180 symmetrical cell.
a The SEM image of KVO cathode; b The XRD spectrum of KVO cathode; c The cyclic voltammetry curve of KVO||3DP-180 full cell; d the charge-discharge curves of KVO||3DP-180 full cell at 0.1 A g−1; e The rate performance and f the cycling lifespan of KVO||3DP-180 full cell.