Wang-Qi Bao, Xing Yang, Tian-En Shi, Ze Li, Yi-Xin Zhang, Jing Feng, Zhen-Hua Ge. The role of Ag8GeS6 addition in p-type SnSe with enhanced thermoelectric properties[J]. Materials Lab, 2024, 3(3): 240011. doi: 10.54227/mlab.20240011
Citation: Wang-Qi Bao, Xing Yang, Tian-En Shi, Ze Li, Yi-Xin Zhang, Jing Feng, Zhen-Hua Ge. The role of Ag8GeS6 addition in p-type SnSe with enhanced thermoelectric properties[J]. Materials Lab, 2024, 3(3): 240011. doi: 10.54227/mlab.20240011

RESEARCH ARTICLE

The role of Ag8GeS6 addition in p-type SnSe with enhanced thermoelectric properties

More Information
  • Corresponding author: zge@kust.edu.cn
  • Polycrystalline SnSe is anticipated to perform in thermoelectric applications within the intermediate temperature range due to its superior machinability and more accessible synthesis conditions relative to single-crystal SnSe. Nonetheless, the subpar electrical properties of SnSe present a significant challenge in strengthening its electrical transport performance while preserving its intrinsic low heat conductivity, hence impeding the advancement of polycrystalline SnSe performance. This work examined the alterations in thermoelectric characteristics following the introduction of Ag8GeS6 compound into SnSe. When the Ag8GeS6 enters the SnSe matrix, the carrier concentration increases due to the Ag+ substitution, and the n-type second phase Ag2Se in the SnSe matrix acts as an electron attraction center also play an important role. Therefore, the electrical transport property increases from 306 μW m−1 K−2 of the pristine sample to 617 μW m−1 K−2 of the SnSe doped with 0.25 weight percent Ag8GeS6 sample at 873 K. Besides, the thermal conductivity is kept by the point defects, second phase, and dislocations, which can enhance the phonon scattering, and a low lattice thermal conductivity of 0.3 W m−1 K−1 for the SnSe doped with 0.125 weight percent Ag8GeS6 sample is obtained at 873 K. Consequently, a peak ZT value of 1.3 at 873 K and a high average ZT value of 0.57 from 323-873 K were achieved for SnSe doped with 0.25 weight percent Ag8GeS6. This demonstrates the potential in the field of power generation.


  • 加载中
  • 1. L.-D. Zhao, M. G. Kanatzidis, J. Materiomics, 2016, 2, 101
    2. Y. Xiao, L.-D. Zhao, Science, 2020, 367, 1196
    3. B. Qin, M. G. Kanatzidis, L-D. Zhao, Science, 2024, 386, 285
    4. B. Qin, L.-D. Zhao, Science, 2022, 378, 832
    5. Z.-G. Chen, W.-D. Liu, J. Mater. Sci. Technol., 2022, 121, 256
    6. J. Peng, F. Ge, W. Han, T. Wu, J. Tang, Y. Li, C. Wang, J. Mater. Sci. Technol., 2025, 212, 272
    7. Z.-G. Chen, X. Shi, L.-D. Zhao, J. Zou, Prog. Mater Sci., 2018, 97, 283
    8. J. He, T. M. Tritt, Science, 2017, 357, 1369
    9. B. Jiang, W. Wang, S. Liu, Y. Wang, C. Wang, Y. Chen, L. Xie, M. Huang, J. He, Science, 2022, 377, 208
    10. F. Z. Zhang, D. Wu, J. He, Mat. Lab, 2022, 1, 220012
    11. Y.-P. Wang, B.-C. Qin, D.-Y. Wang, T. Hong, X. Gao, L.-D. Zhao, Rare Met., 2021, 40, 2819
    12. N. Xin, Y. Li, H. Shen, L. Shen, G. Tang, J. Materiomics, 2022, 8, 475
    13. Y. Qin, T. Xiong, J.-F. Zhu, Y.-L. Yang, H.-R. Ren, H.-L. He, C.-P. Niu, X.-H. Li, M.-Q. Xie, T. Zhao, J. Adv. Ceram., 2022, 11, 1671
    14. Y. Wu, X. Zhang, B. Wang, J. Liang, Z. Zhang, J. Yang, X. Dong, S. Zheng, H.-Z. Zhao, J. Mater. Sci. Technol., 2022, 101, 71
    15. Y.-X. Zhang, Q. Lou, Z.-H. Ge, S.-W. Gu, J.-X. Yang, J. Guo, Y.-K. Zhu, Y. Zhou, X.-H. Yu, J. Feng, J. He, Acta Mater., 2022, 233, 117972
    16. H. Hu, Y. Ju, J. Yu, Z. Wang, J. Pei, H.-C. Thong, J.-W. Li, B. Cai, F. Liu, Z. Han, B. Su, H.-L. Zhuang, Y. Jiang, H. Li, Q. Li, H. Zhao, B.-P. Zhang, J. Zhu, J.-F. Li, Nat. Mater., 2024, 23, 527
    17. C. Li, L. Wu, Y.-X. Zhang, J. Guo, J. Feng, Z.-H. Ge, Mat. Lab, 2022, 1, 220014
    18. C. Tang, D. Liang, H. Li, K. Luo, B. Zhang, J. Adv. Ceram., 2019, 8, 209
    19. Y.-X. Zhang, Q.-Y. Huang, X. Yan, C.-Y. Wang, T.-Y. Yang, Z.-Y. Wang, Y.-C. Shi, Q. Shan, J. Feng, Z.-H. Ge, Nat. Commun., 2024, 15, 2736
    20. C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.-F. Li, J. He, L.-D. Zhao, Science, 2018, 360, 778
    21. L.-D. Zhao, C. Chang, G. Tan, M. G. Kanatzidis, Energy Environ. Sci., 2016, 9, 3044
    22. L. Zhang, J. Wang, Q. Sun, P. Qin, Z. Cheng, Z. Ge, Z. Li, S. Dou, Adv. Energy Mater., 2017, 7, 1700573
    23. H. Zhang, X. Liu, J. Wang, B. Zhang, J. Chen, L. Yang, G. Wang, M. Li, Y. Zheng, X. Zhou, G. Han, ACS Appl. Mater. Interfaces, 2021, 13, 37201
    24. Y. Gong, P. Ying, Q. Zhang, Y. Liu, X. Huang, W. Dou, Y. Zhang, D. Li, D. Zhang, T. Feng, M. Wang, G. Chen, G. Tang, Energy Environ. Sci., 2024, 17, 1612
    25. B. Qin, Y. Zhang, D. Wang, Q. Zhao, B. Gu, H. Wu, H. Zhang, B. Ye, S. J. Pennycook, L.-D. Zhao, J. Am. Chem. Soc., 2020, 142, 5901
    26. A. I. Pogodin, M. J. Filep, V. Y. Izai, O. P. Kokhan, P. Kúš, J. Phys. Chem. Solids, 2022, 168, 110828
    27. H. Liang, Q. Lou, Y.-K. Zhu, J. Guo, Z.-Y. Wang, S.-W. Gu, W. Yu, J. Feng, J. He, Z.-H. Ge, ACS Appl. Mater. Interfaces, 2021, 13, 45589
    28. Y. Yu, D.-S. He, S. Zhang, O. Cojocaru-Mirédin, T. Schwarz, A. Stoffers, X.-Y. Wang, S. Zheng, B. Zhu, C. Scheu, D. Wu, J.-Q. He, M. Wuttig, Z.-Y. Huang, F.-Q. Zu, Nano Energy, 2017, 37, 203
    29. P. Carruthers, Phys. Rev., 1959, 114, 995
    30. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Science, 2015, 348, 109
    31. H. Leng, M. Zhou, J. Zhao, Y. Han, L. Li, J. Electron. Mater., 2016, 45, 527
    32. C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day, G. J. Snyder, J. Mater. Chem. A, 2014, 2, 11171
    33. M. Cutler, N. F. Mott, Phys. Rev., 1969, 181, 1336
    34. J. Zhu, X. Zhang, M. Guo, J. Li, J. Hu, S. Cai, W. Cai, Y. Zhang, J. Sui, npj Comput. Mater., 2021, 7, 116
    35. T. A. Wubieneh, C.-L. Chen, P. C. Wei, S.-Y. Chen, Y.-Y. Chen, RSC Adv., 2016, 6, 114825
    36. T.-R. Wei, C.-F. Wu, X. Zhang, Q. Tan, L. Sun, Y. Pan, J.-F. Li, Phys. Chem. Chem. Phys., 2015, 17, 30102
    37. E. K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, J. Mater. Chem. A, 2016, 4, 1848
    38. H. Wang, H. Hu, N. Man, C. Xiong, Y. Xiao, X. Tan, G. Liu, J. Jiang, Mater. Today Phys., 2021, 16, 100298
    39. C. Li, H. Wu, B. Zhang, H. Zhu, Y. Fan, X. Lu, X. Sun, X. Zhang, G. Wang, X. Zhou, ACS Appl. Mater. Interfaces, 2020, 12, 8446
    40. H. Guo, H. Xin, X. Qin, J. Zhang, D. Li, Y. Li, C. Song, C. Li, J. Alloys Compd., 2016, 689, 87
    41. C.-H. Chien, C.-C. Chang, C.-L. Chen, C.-M. Tseng, Y.-R. Wu, M.-K. Wu, C.-H. Lee, Y.-Y. Chen, RSC Adv., 2017, 7, 34300
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Information

Article Metrics

Article views(171) PDF downloads(73) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint