Citation: | Yijiang Chen, Shan Yu, Jiahao Zhao, Yihan Sun, Xinxin Lu, Zebiao Li, Ying Zhou. Recent advance in solar-driven photothermal water-splitting for hydrogen production: a minireview[J]. Materials Lab, 2025, 4(2): 240009. doi: 10.54227/mlab.20240009 |
Solar energy's potential to revolutionize the energy sector is undeniable, with its ability to produce hydrogen—a clean and renewable fuel—via solar-driven catalytic water splitting. This review highlights the critical strides in solar-driven photothermal catalysis for hydrogen production, a technology that is promising, eco-friendly, and sustainable for energy in future. It first discusses in detail the classification of solar-driven photothermal catalytic water splitting for hydrogen production and comprehensively reviews the recent progresses, specifically dividing them into photothermal catalysis under external heating, photothermal catalysis by the concentrated sunlight, and photothermal catalysis using the full spectrum of unconcentrated sunlight for hydrogen production. Further, the mechanism of introducing thermal energy to enhance photocatalytic hydrogen production efficiency was also discussed, focusing on five aspects: thermodynamics, ionization constant, charge carriers, mass transfer process, and hydrogen-oxygen recombination reaction. Finally, this review summarizes potential challenges and possible research directions of solar-driven photothermal catalytic hydrogen production, aiming to provide readers with research clues and promote the further development of photothermal catalytic technology in hydrogen production.
1. | S. Mohanty, P. K. Patra, S. S. Sahoo and A. Mohanty, Renewable and Sustainable Energy Reviews, 2017, 78, 539 |
2. | F. A. Chowdhury, M. L. Trudeau, H. Guo and Z. Mi, Nature Communications, 2018, 9, 1707 |
3. | Q. Wang, M. Nakabayashi, T. Hisatomi, S. Sun, S. Akiyama, Z. Wang, Z. Pan, X. Xiao, T. Watanabe, T. Yamada, N. Shibata, T. Takata and K. Domen, Nature Materials, 2019, 18, 827 |
4. | K.-H. Ye, H. Li, D. Huang, S. Xiao, W. Qiu, M. Li, Y. Hu, W. Mai, H. Ji and S. Yang, Nature Communications, 2019, 10, 3687 |
5. | S. Guo, X. Li, J. Li and B. Wei, Nature Communications, 2021, 12, 1343 |
6. | S. Yu, Y. Li, A. Jiang, Y. Chen, Y. Duan, J. Ye and Y. Zhou, Advanced Energy Materials, 2024, 14, 2304362 |
7. | C. Wu, K. Lv, X. Li and Q. Li, Chinese Journal of Catalysis, 2023, 54, 137 |
8. | Y. Chen, S. Yu, Y. Zhong, Y. Wang, J. Ye and Y. Zhou, Processes, 2023, 11, 3160 |
9. | Y. Zhang, Y. Xiao, S. Abuelgasim and C. Liu, Clean Energy Science and Technology, 2024, 2, 117 |
10. | X. Chu, C. I. Sathish, M. Li, J.-H. Yang, W. Li, D.-C. Qi, D. Chu, A. Vinu and J. Yi, Battery Energy, 2023, 2, 20220041 |
11. | Y. Wang, W. Huang, S. Guo, X. Xin, Y. Zhang, P. Guo, S. Tang and X. Li, Advanced Energy Materials, 2021, 11, 2102452 |
12. | Z. Wang, Y. Luo, T. Hisatomi, J. J. M. Vequizo, S. Suzuki, S. Chen, M. Nakabayashi, L. Lin, Z. Pan, N. Kariya, A. Yamakata, N. Shibata, T. Takata, K. Teshima and K. Domen, Nature Communications, 2021, 12, 1005 |
13. | J. Li, L. Ding, Z. Su, K. Li, F. Fang, R. Sun, Y. Qin and K. Chang, Advanced Materials, 2023, 35, 2305535 |
14. | L. Jiao, Y. Dong, X. Xin, L. Qin and H. Lv, Applied Catalysis B: Environmental, 2021, 291, 120091 |
15. | L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang, Y. Li, X. Lu, D. Wei, G. Feng, Q. Yu, X. Cai, J. Zhao, Z. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli and J. Bao, Nature Nanotechnology, 2014, 9, 69 |
16. | X. Yan, M. Xia, H. Liu, B. Zhang, C. Chang, L. Wang and G. Yang, Nature Communications, 2023, 14, 1741 |
17. | Z. Wang, C. Li and K. Domen, Chemical Society Reviews, 2019, 48, 2109 |
18. | S. Chen, T. Takata and K. Domen, Nature Reviews Materials, 2017, 2, 17050 |
19. | P. Varadhan, H.-C. Fu, Y.-C. Kao, R.-H. Horng and J.-H. He, Nature Communications, 2019, 10, 5282 |
20. | S. Fang, Z. Sun and Y. H. Hu, ACS Catalysis, 2019, 9, 5047 |
21. | S. Fang, Y. Liu, Z. Sun, J. Lang, C. Bao and Y. H. Hu, Applied Catalysis B: Environmental, 2020, 278, 119316 |
22. | Y. Li, H. Zhou, S. Cai, D. Prabhakaran, W. Niu, A. Large, G. Held, R. A. Taylor, X.-P. Wu and S. C. E. Tsang, Nature Catalysis, 2024, 7, 77 |
23. | Y. Shen, Y. Shi, Z. Chen, S. Zhang, K. Chen, X. Luo, F. Guo, G. Wang and W. Shi, Chemical Engineering Journal, 2024, 484, 149607 |
24. | X. Zhu, Y. Liu, M. Wang, L. Zhang, Q. Li, E. Zhang, H. Mo, Y. Gao, C. Xu and Y. Zhang, Chemical Engineering Journal, 2024, 479, 147636 |
25. | S. Song, H. Song, L. Li, S. Wang, W. Chu, K. Peng, X. Meng, Q. Wang, B. Deng, Q. Liu, Z. Wang, Y. Weng, H. Hu, H. Lin, T. Kako and J. Ye, Nature Catalysis, 2021, 4, 1032 |
26. | L. Zhou, J. M. P. Martirez, J. Finzel, C. Zhang, D. F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E. A. Carter, P. Nordlander and N. J. Halas, Nature Energy, 2020, 5, 61 |
27. | B. Han, W. Wei, L. Chang, P. Cheng and Y. H. Hu, ACS Catalysis, 2016, 6, 494 |
28. | D. Takami, J. Tsubakimoto, W. Sarwana, A. Yamamoto and H. Yoshida, ACS Applied Energy Materials, 2023, 6, 7627 |
29. | C. Sun, K. Zhao and Z. Yi, Journal of Inorganic Materials, 2023, 38, 1245 |
30. | C. Wang, S. Fang, S. Xie, Y. Zheng and Y. H. Hu, Journal of Materials Chemistry A, 2020, 8, 7390 |
31. | T. H. Tan, B. Xie, Y. H. Ng, S. F. B. Abdullah, H. Y. M. Tang, N. Bedford, R. A. Taylor, K.-F. Aguey-Zinsou, R. Amal and J. Scott, Nature Catalysis, 2020, 3, 1034 |
32. | M. Cai, Z. Wu, Z. Li, L. Wang, W. Sun, A. A. Tountas, C. Li, S. Wang, K. Feng, A.-B. Xu, S. Tang, A. Tavasoli, M. Peng, W. Liu, A. S. Helmy, L. He, G. A. Ozin and X. Zhang, Nature Energy, 2021, 6, 807 |
33. | X. Shi, W. Peng, Y. Huang, C. Gao, Y. Fu, Z. Wang, L. Yang, Z. Zhu, J. Cao, F. Rao, G. Zhu, S. Lee and Y. Xiong, Nature Communications, 2024, 15, 10135 |
34. | Y. Wan, F. Fang, R. Sun, J. Zhang and K. Chang, Acta Physico-Chimica Sinica, 2023, 39, 2212042 |
35. | L. Zhao, Y. Qi, L. Song, S. Ning, S. Ouyang, H. Xu and J. Ye, Angewandte Chemie International Edition, 2019, 58, 7708 |
36. | Z. Li, J. Liu, Y. Zhao, G. I. N. Waterhouse, G. Chen, R. Shi, X. Zhang, X. Liu, Y. Wei, X.-D. Wen, L.-Z. Wu, C.-H. Tung and T. Zhang, Advanced Materials, 2018, 30, 1800527 |
37. | U. Aslam, S. Chavez and S. Linic, Nature Nanotechnology, 2017, 12, 1000 |
38. | Z. Liu, L. Niu, X. Zong, L. An, D. Qu, X. Wang and Z. Sun, Applied Catalysis B: Environmental, 2022, 313, 121439 |
39. | X. Li, X. Zhang, H. O. Everitt and J. Liu, Nano Letters, 2019, 19, 1706 |
40. | Y. Peng, J. Albero, A. Franconetti, P. Concepción and H. García, ACS Catalysis, 2022, 12, 4938 |
41. | T. Hou, L. Chen, Y. Xin, W. Zhu, C. Zhang, W. Zhang, S. Liang and L. Wang, ACS Energy Letters, 2020, 5, 2444 |
42. | Q. Zhu, J. Song, Z. Liu, K. Wu, X. Li, Z. Chen and H. Pang, Journal of Colloid and Interface Science, 2022, 623, 992 |
43. | Q. Yang, G. Tan, B. Zhang, S. Feng, Y. Bi, Z. Wang, A. Xia, H. Ren and W. Liu, Chemical Engineering Journal, 2023, 458, 141378 |
44. | Y. Wang, Y. Zeng, Z. Xiao, P. Chen, S. Huang, Z. Xu, W. Lv and G. Liu, Chemical Engineering Journal, 2024, 501, 157739 |
45. | X. Li, R. Yang, L. Zou, S. Zheng, M. Chen, J. Wen, H. Zhang, C. Wu, Y. Zhang and Y. Zhou, Advanced Materials, 2025, 37, 2416283 |
46. | T. Liu, P. Sun, W. Zhao, Y. Li, L. Cheng, J. Fan, X. Bi and X. Dong, Chinese Chemical Letters, 2024, 35, 108813 |
47. | J. Huang, Z. Huang, T. Liu, Y. Wen, J. Yuan, S. Yang and H. Li, Chinese Chemical Letters, 2025, 36, 110179 |
48. | T. Li, P.-L. Zhang, L.-Z. Dong and Y.-Q. Lan, Angewandte Chemie International Edition, 2024, 63, e202318180 |
49. | A. Marimuthu, J. Zhang and S. Linic, Science, 2013, 339, 1590 |
50. | Y. Wei, D. Chen, X. Fan, X. Tang, L. Yao, X. Zhao, Q. Li, J. Wang, T. Qiu and Q. Hao, ACS Catalysis, 2024, 14, 15043 |
51. | F. Wang, C. Li, H. Chen, R. Jiang, L.-D. Sun, Q. Li, J. Wang, J. C. Yu and C.-H. Yan, Journal of the American Chemical Society, 2013, 135, 5588 |
52. | H. L. Yajin Li, Lan Ma, Jiaxiong Liu, Dehua He, Acta Physico-Chimica Sinica, 2024, 40, 2308005 |
53. | H. Song, S. Luo, H. Huang, B. Deng and J. Ye, ACS Energy Letters, 2022, 7, 1043 |
54. | J. Zhang, Z. Hu, J. Zheng, Y. Xiao, J. Song, X. Li, C. Cheng and Z. Zhang, Energy Conversion and Management, 2024, 318, 118901 |
55. | S. Fang and Y. H. Hu, Chemical Society Reviews, 2022, 51, 3609 |
56. | B. Han and Y. H. Hu, The Journal of Physical Chemistry C, 2015, 119, 18927 |
57. | H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi and K. Domen, Nature, 2021, 598, 304 |
58. | J. H. Kim, D. Hansora, P. Sharma, J.-W. Jang and J. S. Lee, Chemical Society Reviews, 2019, 48, 1908 |
59. | B. D. Sherman, N. K. McMillan, D. Willinger and G. Leem, Nano Convergence, 2021, 8, 7 |
60. | J.-W. Lee, K.-H. Cho, J.-S. Yoon, Y.-M. Kim and Y.-M. Sung, Journal of Materials Chemistry A, 2021, 9, 21576 |
61. | Z. Yu, H. Liu, M. Zhu, Y. Li and W. Li, Small, 2021, 17, 1903378 |
62. | N. Pirrone, F. Bella and S. Hernández, Green Chemistry, 2022, 24, 5379 |
63. | F. Dingenen and S. W. Verbruggen, Renewable and Sustainable Energy Reviews, 2021, 142, 110866 |
64. | A. Vilanova, P. Dias, T. Lopes and A. Mendes, Chemical Society Reviews, 2024, 53, 2388 |
65. | Q. Wang and K. Domen, Chemical Reviews, 2020, 120, 919 |
66. | X. Chen, C. Li, M. Grätzel, R. Kostecki and S. S. Mao, Chemical Society Reviews, 2012, 41, 7909 |
67. | A. Kudo and Y. Miseki, Chemical Society Reviews, 2009, 38, 253 |
68. | Q. Yang, X. Tong and Z. Wang, Materials Reports: Energy, 2024, 4, 100253 |
69. | L. Wang, Y. Zhang, W. Li and L. Wang, Materials Reports: Energy, 2023, 3, 100232 |
70. | P. Zhu, Y. Shi, C. Lou, C. Zeng and C. Wang, Low-Carbon Chemistry and Chemical Engineering, 2022, 47, 145 |
71. | G. Yang, Q. Xu and G. Zeng, Electron, 2024, 2, e39 |
72. | W. Zhang, Y. Chao and S. Guo, Energy Lab, 2023, 1, 220004 |
73. | X. Liang, Q. Wu, Q. Liu, L. Wang, M. Zhang, K. Sun, Y. Shen, H. Chen and X. Zou, Energy Lab, 2023, 1, 220013 |
74. | T. Wang, C. Duanmu, X. Meng, J. Zou and Y. Pan, Low-Carbon Chemistry and Chemical Engineering, 2024, 49, 41 |
75. | K. Wang, D. Huang, X. Li, K. Feng, M. Shao, J. Yi, W. He and L. Qiao, Electron, 2023, 1, e4 |
76. | S. Yao, Y. Wei, Z. Lu, S. Guo, J. Chen and Z. Yu, Renewables, 2023, 1, 397 |
77. | S. Docao, A. R. Koirala, M. G. Kim, I. C. Hwang, M. K. Song and K. B. Yoon, Energy & Environmental Science, 2017, 10, 628 |
78. | J. Li, M. Hatami, Y. Huang, B. Luo, D. Jing and L. Ma, International Journal of Hydrogen Energy, 2023, 48, 6336 |
79. | R. Song, M. Liu, B. Luo, J. Geng and D. Jing, AIChE Journal, 2020, 66, e17008 |
80. | X. Zhang, C. Xu, L. Zhang, Z. Li, J. Hong and Y. Zhang, ACS Applied Energy Materials, 2022, 5, 4564 |
81. | L. Zhang, X. Zhang, H. Mo, J. Hong, S. Yang, Z. Zhan, C. Xu and Y. Zhang, ACS Applied Materials & Interfaces, 2023, 15, 39304 |
82. | X. Luo, R. Li, K. P. Homewood, X. Chen and Y. Gao, Applied Surface Science, 2020, 505, 144099 |
83. | R. Song, B. Luo, J. Geng, D. Song and D. Jing, Industrial & Engineering Chemistry Research, 2018, 57, 7846 |
84. | S. Hu, J. Shi, B. Luo, C. Ai and D. Jing, Journal of Colloid and Interface Science, 2022, 608, 2058 |
85. | J. Li, L. Ma, C. Fu, Y. Huang, B. Luo, J. Cao, J. Geng and D. Jing, Industrial & Engineering Chemistry Research, 2022, 61, 6436 |
86. | J. Li, L. Ma, Y. Huang, BingLuo and D. Jing, International Journal of Hydrogen Energy, 2023, 48, 13170 |
87. | R. Li, C. Wen, K. Yan, T. Liu, B. Zhang, M. Xu and Z. Zhou, Journal of Materials Chemistry A, 2023, 11, 7128 |
88. | Y. Li, Y.-K. Peng, L. Hu, J. Zheng, D. Prabhakaran, S. Wu, T. J. Puchtler, M. Li, K.-Y. Wong, R. A. Taylor and S. C. E. Tsang, Nature Communications, 2019, 10, 4421 |
89. | P. Zhou, I. A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun and Z. Mi, Nature, 2023, 613, 66 |
90. | W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile and A. Steinfeld, Science, 2010, 330, 1797 |
91. | D. Marxer, P. Furler, J. Scheffe, H. Geerlings, C. Falter, V. Batteiger, A. Sizmann and A. Steinfeld, Energy & Fuels, 2015, 29, 3241 |
92. | J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun and C.-H. Yan, Nature Communications, 2014, 5, 5669 |
93. | F. Xue, H. Wu, Y. Liu, M. Min, M. Hatami, N. Li and M. Liu, International Journal of Hydrogen Energy, 2023, 48, 6346 |
94. | X. Sun, Z. Chen, Y. Shen, J. Lu, Y. Shi, Y. Cui, F. Guo and W. Shi, Journal of Colloid and Interface Science, 2023, 652, 1016 |
95. | S. W. L. Ng, M. Gao, W. Lu, M. Hong and G. W. Ho, Advanced Functional Materials, 2021, 31, 2104750 |
96. | R. Xiong, C. Tang, K. Li, J. Wan, W. Jia, Y. Xiao, B. Cheng and S. Lei, Journal of Materials Chemistry A, 2022, 10, 22819 |
97. | S. Zhang, G. Zhang, S. Wu, Z. Guan, Q. Li and J. Yang, Journal of Colloid and Interface Science, 2023, 650, 1974 |
98. | Y. Shi, L. Li, Z. Xu, F. Guo and W. Shi, Chemical Engineering Journal, 2023, 459, 141549 |
99. | X.-Q. Qiao, W. Chen, C. Li, Z. Wang, D. Hou, B. Sun and D.-S. Li, Materials Reports: Energy, 2023, 3, 100234 |
100. | Y. Shi, Z. Chen, P. Hao, P. Shan, J. Lu, F. Guo and W. Shi, Journal of Colloid and Interface Science, 2024, 653, 1339 |
101. | J. Fang, F. Sun, A. Kheradmand, H. Xu, H. Dong, X. Yi, H. Hong and X. Liu, Fuel, 2023, 353, 129277 |
102. | W. H. Lee, C. W. Lee, G. D. Cha, B.-H. Lee, J. H. Jeong, H. Park, J. Heo, M. S. Bootharaju, S.-H. Sunwoo, J. H. Kim, K. H. Ahn, D.-H. Kim and T. Hyeon, Nature Nanotechnology, 2023, 18, 754 |
103. | L. Ding, K. Li, J. Li, Q. Lu, F. Fang, T. Wang and K. Chang, ACS Nano, 2023, 17, 11616 |
104. | C. Pornrungroj, A. B. Mohamad Annuar, Q. Wang, M. Rahaman, S. Bhattacharjee, V. Andrei and E. Reisner, Nature Water, 2023, 1, 952 |
105. | L. He, X. Zeng, H. Chen, L. Zhao, Z. Huang, D. Wang, X. He, W. Fang, X. Du and W. Li, Advanced Functional Materials, 2024, 34, 2313058 |
106. | W. Li, T. Li, B. Deng, T. Xu, G. Wang, W. Hu and C. Si, Advanced Composites and Hybrid Materials, 2024, 7, 52 |
107. | J. Zhang, Y. Shi, X. Huang and X. Qian, Surfaces and Interfaces, 2024, 44, 103689 |
108. | Y. Ren, D. Feng, Z. Yan, Z. Sun, Z. Zhang, D. Xu, C. Qiao, Z. Chen, Y. Jia, S. Chan Jun, S. Liu and Y. Yamauchi, Chemical Engineering Journal, 2023, 453, 139875 |
109. | J. Lu, Y. Shi, Z. Chen, X. Sun, H. Yuan, F. Guo and W. Shi, Chemical Engineering Journal, 2023, 453, 139834 |
110. | Z. Chen, Y. Yan, K. Sun, L. Tan, F. Guo, X. Du and W. Shi, Journal of Colloid and Interface Science, 2024, 661, 12 |
111. | H. Han and X. Meng, Journal of Colloid and Interface Science, 2023, 650, 846 |
112. | Z. Ma, W. Liu, W. Yang, W. Li and B. Han, Fuel, 2021, 286, 119490 |
113. | W. Shi, Z. Chen, J. Lu, X. Sun, Z. Wang, Y. Yan, F. Guo, L. Chen and G. Wang, Chemical Engineering Journal, 2023, 474, 145690 |
114. | C. K. N. Peh, M. Gao and G. W. Ho, Journal of Materials Chemistry A, 2015, 3, 19360 |
115. | W. H. Leng, P. R. F. Barnes, M. Juozapavicius, B. C. O’Regan and J. R. Durrant, The Journal of Physical Chemistry Letters, 2010, 1, 967 |
116. | J. Zheng, L. Lu, K. Lebedev, S. Wu, P. Zhao, I. J. McPherson, T.-S. Wu, R. Kato, Y. Li, P.-L. Ho, G. Li, L. Bai, J. Sun, D. Prabhakaran, R. A. Taylor, Y.-L. Soo, K. Suenaga and S. C. E. Tsang, Chem Catalysis, 2021, 1, 162 |
117. | P. Cheng, D. Wang and P. Schaaf, Advanced Sustainable Systems, 2022, 6, 2200115 |
118. | B. Wang, Y. Si, M. Du, S. Zhao, J. Huang, X. Zhao, S. Wang, K. Lu and M. Liu, Catalysis Science & Technology, 2024, 14, 4646 |
119. | Y. Fu, K. Lu, Y. Wang, Y. Si, J. Shi, N. Li, Z. Zhou and M. Liu, Science Bulletin, 2024, 69, 1833 |
120. | Y. Xiao, M. Li, H. Li, Z. Wang and Y. Wang, Nano Energy, 2024, 120, 109164 |
121. | X. Zang, Y. Qin, M. Gu, Y. Sun, D. Huang, J. Ji and M. Xue, Materials Today Sustainability, 2023, 24, 100558 |
122. | J. Qu, S. Li, B. Zhong, Z. Deng, Y. Shu, X. yang, Y. Cai, J. Hu and C. M. Li, Nanoscale, 2023, 15, 2455 |
123. | J. Zhu, L. Huang, F. Bao, G. Chen, K. Song, Z. Wang, H. Xia, J. Gao, Y. Song, C. Zhu, F. Lu, T. Zheng and M. Ji, Materials Reports: Energy, 2024, 4, 100245 |
124. | J. Wang, Y. Zhang, S. Jiang, C. Sun and S. Song, Angewandte Chemie International Edition, 2023, 62, e202307808 |
125. | X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutiérrez, F. Moreno, W. Yang, H. O. Everitt and J. Liu, Nano Letters, 2018, 18, 1714 |
126. | Y. Zheng, L. Zhang, J. Guan, S. Qian, Z. Zhang, C. K. Ngaw, S. Wan, S. Wang, J. Lin and Y. Wang, ACS Sustainable Chemistry & Engineering, 2021, 9, 1754 |
127. | F. Dionigi, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, A. Xiong, K. Maeda, K. Domen and I. Chorkendorff, Energy & Environmental Science, 2011, 4, 2937 |
128. | S. I. Nikitenko, T. Chave, C. Cau, H.-P. Brau and V. Flaud, ACS Catalysis, 2015, 5, 4790 |
129. | A. Ruiz-Aguirre, J. G. Villachica-Llamosas, M. I. Polo-López, A. Cabrera-Reina, G. Colón, J. Peral and S. Malato, Energy, 2022, 260, 125199 |
130. | Q. Wei, Y. Yang, J. Hou, H. Liu, F. Cao and L. Zhao, Solar Energy, 2017, 153, 215 |
131. | Z. Kuspanov, B. Bakbolat, A. Baimenov, A. Issadykov, M. Yeleuov and C. Daulbayev, Science of The Total Environment, 2023, 885, 163914 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic diagram of photothermal catalytic water splitting for hydrogen production classification.
Photothermal catalytic water splitting for hydrogen production under external heating. a Schematic diagram of the reaction system;[87] Copyright 2023, Royal Society of Chemistry. b The activity of photothermal catalytic water splitting for H2 production at different temperatures over N-TiO2 (P25)-620 and Au/N-P25-620/MgO(111), 620 represents the treatment temperature of P25 in ammonia is 620 °C (300 W Xe lamp).[88] Copyright 2019, Springer Nature. c Hydrogen production rates over Rh-loaded TiO2 at various temperatures. (Xe lamp equipped with an AM 1.5G filter, at a light intensity of 100 mW cm−1[2]).[21] Copyright 2020, Elsevier. d STH at various temperatures over Rh/Cr2O3/Co3O4–InGaN/GaN NWs (concentrated light intensity of 3.8 W cm−1[2]); e Stability testing over Rh/Cr2O3/Co3O4–InGaN/GaN nanowires by external heating at 70 °C (with concentrated light intensity of 3.8 W cm−1[2]).[89] Copyright 2023, Springer Nature.
Photothermal catalytic water splitting for H2 production by the concentrated sunlight. a Physical image of the reaction device, a 1.1 m × 1.1 m Fresnel lens produced concentrated natural light of approximately 16.07 W cm−1[2] in a plane area of about 8 cm × 8 cm; b Production efficiency of H2, O2, and STH result of the reaction in a) with InGaN/GaN nanowires supported on Rh/Cr2O3/Co3O4 as the photocatalyst.[89] Copyright 2023, Springer Nature. c Specially designed reactor (achieved light-concentrated furnace by a four-mirror floating-zone light furnace) for the photothermal catalytic water splitting for H2 production reaction; d The STH efficiency results at 270 °C with the reactor in c) over Pt/N-TiO2 in Dead Sea water.[22] Copyright 2024, Springer Nature.
H2 production efficiency and surface temperature distribution of different samples under UV-Vis and UV-Vis-IR (full spectrum) irradiation. a H2 production efficiency of ST NS, AST NS, and ST NS-Au); b Hydrogen production efficiency of ST NS and AST NS at 60 °C; c Surface temperature distribution of SiO2 and AS.[95] Copyright 2021, Wiley-VCH. d Photothermal images of CN, CCO and CCO/CN with different CCO amounts after 300 s of irradiation; e H2 production efficiency of them.[96] Copyright 2022, Royal Society of Chemistry. f-g The heat transfer processes 3% Ag2S/PCNVs: f A two-dimensional (2D) finite element model at 20 °C; g A 2D finite element model at 59.6 °C; h photothermal conversion efficiency of 3% Ag2S/PCNVs.[94] Copyright 2023, Elsevier.
Evaluation of light and thermal effects on hydrogen production activity with M-CN and C-CN under different conditions. a-b M-CN (a) and C-CN (b) under full spectrum irradiation by PTC (60 °C), PC, and TC (60 °C) methods; c-d M-CN (c) and C-CN (d) under external heating with different methods (PTC (80 °C), PC, and TC (80 °C)); e-f M-CN (e) and C-CN (f) under full spectrum irradiation; g-h M-CN (g) and C-CN (h) under full spectrum irradiation.[101] Copyright 2023, Elsevier.
Powder 3D assembled catalytic system of photothermal catalytic water splitting for hydrogen production under irradiation without concentrated light. a Structural diagram of porous elastomer hydrogel nanocomposite.[102] Copyright 2023, Springer Nature. b Schematic structure and microscopic images of wood/CoO composite; c thermal imaging of Wood/CoO composite under light irradiation; d Gibbs free energy changes of different phase interfaces for hydrogen evolution from water splitting; e comparison of the photocatalytic water splitting efficiency of carbonized wood/CuS-MoS2 with others (solar simulator (AM 1.5 G), 100 mW cm−1[2]).[5] Copyright 2021, Springer Nature.
Redox potential and Gibbs free energy (ΔG) changes of water splitting at different temperatures. a Temperature dependence of redox potential of half-reaction in water splitting.[112] Copyright 2021, Elsevier. b-c The (ΔG) changes for H2 (b) and O2 (c) evolution in the biphase and triphase system at different temperatures.[11] Copyright 2021, Wiley-VCH.
The reaction energy barriers of different catalysts in photothermal catalytic water splitting for H2 production at different temperatures. a Mg, Al co-doped and Rh/Cr2O3/CoOOH co-loaded SrTiO3.[24] Copyright 2024, Elsevier. b Fe&Cu-In2O3.[81] Copyright 2023, American Chemical Society.
TRPL decay of N-TiO2 at different pH environments (simulate different ionization constants). a Acidic conditions; b alkaline conditions.[88] Copyright 2019, Springer Nature.
Influence of temperature on the charge carrier transfer process. a Photocurrent results and b EIS results of Mg, Al co-doped and Rh/Cr2O3/CoOOH co-loaded SrTiO3 at different temperatures.[24] Copyright 2024, Elsevier. c-d The lifetime of photogenerated electrons by transient photovoltage measurements of TiO2 NPs (c) and TiO2 NTs (d) at different temperatures.[114] Copyright 2015, Royal Society of Chemistry.
Experimental study on the temperature dependence of hydrogen-oxygen recombination reaction over Rh/Cr2O3/Co3O4–InGaN/GaN nanowires (with concentrated light intensity of 3.8 W cm−1[2]).[89] Copyright 2023, Springer Nature.
The schematic diagram for the potential effects on the improved activity of the photothermal catalytic water splitting mechanism for H2 production: ① thermodynamics and reaction activation energy; ② ionization constant (H+ concentration); ③ charge transfer of carriers; ④ mass transfer process; ⑤ hydrogen-oxygen recombination reaction.