Citation: | Peng Han, Ye Chen. Lattice engineering of high-entropy alloy nanomaterials for electrocatalytic applications[J]. Materials Lab, 2025, 4(2): 240018. doi: 10.54227/mlab.20240018 |
High-entropy alloys (HEAs) refer to alloys consisting of five or more principal elements with equiatomic or near-equiatomic proportions and high configurational entropy, featuring great potential in various applications. Particularly, at the nanometer scale, recent advancements of design and synthesis of HEAs demonstrate their remarkable prospects in electrocatalysis. As a pivotal approach to tailoring the electrocatalytic properties of HEA nanomaterials, lattice engineering can manipulate the lattice strain and phase of HEAs, directly tailoring their intrinsic structural factors including electronic structures, surface active sites, and stability. This review summarizes recent advances in the lattice engineering of HEA nanomaterials, including both aspects of lattice strain control and phase control. We also discuss the impact of lattice-dependent properties on electrocatalysis and highlight ongoing challenges and potential opportunities for future research, providing guidelines for design and preparation of high-performance HEA electrocatalysts.
1. | J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater., 2004, 6, 299 |
2. | B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Mater. Sci. Eng., 2004, 375-377, 213 |
3. | W. L. Hsu, C. W. Tsai, A. C. Yeh, J. W. Yeh, Nat. Rev. Chem., 2024, 8, 471 |
4. | X. Huang, G. Yang, S. Li, H. Wang, Y. Cao, F. Peng, H. Yu, J. Energy Chem., 2022, 68, 721 |
5. | D. Liu, Q. Yu, S. Kabra, M. Jiang, P. Forna-Kreutzer, R. Zhang, M. Payne, F. Walsh, B. Gludovatz, M. Asta, A. M. Minor, E. P. George, R. O. Ritchie, Science, 2022, 378, 978 |
6. | P. Shi, R. Li, Y. Li, Y. Wen, Y. Zhong, W. Ren, Z. Shen, T. Zheng, J. Peng, X. Liang, P. Hu, N. Min, Y. Zhang, Y. Ren, P. K. Liaw, D. Raabe, Y.-D. Wang, Science, 2021, 373, 912 |
7. | Y. Liao, Y. Li, R. Zhao, J. Zhang, L. Zhao, L. Ji, Z. Zhang, X. Liu, G. Qin, X. Zhang, Natl. Sci. Rev., 2022, 9, nwac041 |
8. | F. von Rohr, M. J. Winiarski, J. Tao, T. Klimczuk, R. J. Cava, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 7144 |
9. | Y. Xin, S. Li, Y. Qian, W. Zhu, H. Yuan, P. Jiang, R. Guo, L. Wang, ACS Catal., 2020, 10, 11280 |
10. | T. Loffler, A. Ludwig, J. Rossmeisl, W. Schuhmann, Angew. Chem. Int. Ed., 2021, 60, 26894 |
11. | X. Yan, Y. Zhou, S. Wang, Adv. Funct. Mater, 2025, 35, 2413115 |
12. | E. P. George, D. Raabe, R. O. Ritchie, Nat. Rev. Mater., 2019, 4, 515 |
13. | T. A. A. Batchelor, J. K. Pedersen, S. H. Winther, I. E. Castelli, K. W. Jacobsen, J. Rossmeisl, Joule, 2019, 3, 834 |
14. | H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu, W. Zhao, Z. Chen, H. Gong, Y. Yang, Adv. Mater., 2024, 36, e2305453 |
15. | W.-L. Hsu, Y.-C. Yang, C.-Y. Chen, J.-W. Yeh, Intermetallics, 2017, 89, 105 |
16. | D. Zhang, Y. Shi, H. Zhao, W. Qi, X. Chen, T. Zhan, S. Li, B. Yang, M. Sun, J. Lai, B. Huang, L. Wang, J. Mater. Chem. A, 2021, 9, 889 |
17. | J. Hao, T. Wang, J. Cai, G. Gao, Z. Zhuang, R. Yu, J. Wu, G. Wu, S. Lu, X. Wang, M. Du, D. Wang, H. Zhu, Angew. Chem. Int. Ed., 2025, 64, e202419369 |
18. | M. Li, F. Lin, S. Zhang, R. Zhao, L. Tao, L. Li, J. Li, L. Zeng, M. Luo, S. Guo, Sci. Adv., 2024, 10, eadn2877 |
19. | X. Han, G. Wu, S. Zhao, J. Guo, M. Yan, X. Hong, D. Wang, Matter, 2023, 6, 1717 |
20. | Y. Sun, W. Zhang, Q. Zhang, Y. Li, L. Gu, S. Guo, Matter, 2023, 6, 193 |
21. | C. Zhan, Y. Xu, L. Bu, H. Zhu, Y. Feng, T. Yang, Y. Zhang, Z. Yang, B. Huang, Q. Shao, X. Huang, Nat. Commun., 2021, 12, 6261 |
22. | L. Tao, M. Sun, Y. Zhou, M. Luo, F. Lv, M. Li, Q. Zhang, L. Gu, B. Huang, S. Guo, J. Am. Chem. Soc., 2022, 144, 10582 |
23. | Y. Kang, O. Cretu, J. Kikkawa, K. Kimoto, H. Nara, A. S. Nugraha, H. Kawamoto, M. Eguchi, T. Liao, Z. Sun, T. Asahi, Y. Yamauchi, Nat. Commun., 2023, 14, 4182 |
24. | L. Fu, H. N. Nam, J. Zhou, Y. Kang, K. Wang, Z. Zhou, Y. Zhao, L. Zhu, R. Nandan, M. Eguchi, Q. M. Phung, T. Yokoshima, K. Wu, Y. Yamauchi, ACS Nano, 2024, 18, 27617 |
25. | X. Zhang, K. Ren, Y. Liu, Z. Gu, Z. Huang, S. Zheng, X. Wang, J. Guo, I. V. Zatovsky, J. Cao, X. Wu, Acta Phys.-Chim. Sin., 2024, 40, 2307057 |
26. | D. Wu, K. Kusada, Y. Nanba, M. Koyama, T. Yamamoto, T. Toriyama, S. Matsumura, O. Seo, I. Gueye, J. Kim, L. S. Rosantha Kumara, O. Sakata, S. Kawaguchi, Y. Kubota, H. Kitagawa, J. Am. Chem. Soc., 2022, 144, 3365 |
27. | H. Guo, S. Guo, CCS Chem., 2025, 7, 326 |
28. | Y. Sheng, J. Xie, R. Yang, H. Yu, K. Deng, J. Wang, H. Wang, L. Wang, Y. Xu, Angew. Chem. Int. Ed., 2024, 63, e202410442 |
29. | F. Xing, J. Ma, K. I. Shimizu, S. Furukawa, Nat. Commun., 2022, 13, 5065 |
30. | L. Zhang, X. Zhang, C. Chen, J. Zhang, W. Tan, Z. Xu, Z. Zhong, L. Du, H. Song, S. Liao, Y. Zhu, Z. Zhou, Z. Cui, Angew. Chem. Int. Ed., 2024, 63, e202411123 |
31. | V. A. Mints, J. K. Pedersen, A. Bagger, J. Quinson, A. S. Anker, K. M. Ø. Jensen, J. Rossmeisl, M. Arenz, ACS Catal., 2022, 12, 11263 |
32. | Y. Chang, I. Benlolo, Y. Bai, C. Reimer, D. Zhou, H. Zhang, H. Matsumura, H. Choubisa, X.-Y. Li, W. Chen, P. Ou, I. Tamblyn, E. H. Sargent, Matter, 2024, 7, 4099 |
33. | L. Tao, B. Huang, Y. Zhao, Chem. Rec., 2023, 23, e202300097 |
34. | H. Huang, C. Chen, C. C. Chang, F. Lai, S. Liu, H. Fu, Y. Chen, H. Li, W. H. Huang, N. Zhang, T. Liu, Adv. Mater., 2024, 36, e2314142 |
35. | M. Luo, S. Guo, Nat. Rev. Mater., 2017, 2, 17059 |
36. | M. Mavrikakis, B. Hammer, J. K. Nørskov, Phys. Rev. Lett., 1998, 81, 2819 |
37. | J. Li, Y. Chen, Q. He, X. Xu, H. Wang, C. Jiang, B. Liu, Q. Fang, Y. Liu, Y. Yang, P. K. Liaw, C. T. Liu, Proc. Natl. Acad. Sci. U. S. A., 2022, 119, e2200607119 |
38. | Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R. O. Ritchie, Q. Yu, Nature, 2019, 574, 223 |
39. | S. Guo, Q. Hu, C. Ng, C. T. Liu, Intermetallics, 2013, 41, 96 |
40. | B. Wang, W. Liu, Y. Leng, X. Yu, C. Wang, L. Hu, X. Zhu, C. Wu, Y. Yao, Z. Zou, iScience, 2023, 26, 106326 |
41. | H. Zhu, Z. Zhu, J. Hao, S. Sun, S. Lu, C. Wang, P. Ma, W. Dong, M. Du, Chem. Eng. J., 2022, 431, 133251 |
42. | H. Luo, L. Li, F. Lin, Q. Zhang, K. Wang, D. Wang, L. Gu, M. Luo, F. Lv, S. Guo, Adv. Mater., 2024, 36, e2403674 |
43. | D. Wang, Z. Chen, Y.-C. Huang, W. Li, J. Wang, Z. Lu, K. Gu, T. Wang, Y. Wu, C. Chen, Y. Zhang, X. Huang, L. Tao, C.-L. Dong, J. Chen, C. V. Singh, S. Wang, Sci. China Mater., 2021, 64, 2454 |
44. | Q. J. Li, H. Sheng, E. Ma, Nat. Commun., 2019, 10, 3563 |
45. | Q. Chen, X. Han, Z. Xu, Q. Chen, Q. Wu, T. Zheng, P. Wang, Z. Wang, J. Wang, H. Li, Z. Xia, J. Hao, Nano Energy, 2023, 110, 108380 |
46. | X. Zou, X. Zhao, B. Pang, H. Ma, K. Zeng, S. Zhi, H. Guo, Adv. Mater., 2024, 36, 2412954 |
47. | X. Zhao, H. Cheng, X. Chen, Q. Zhang, C. Li, J. Xie, N. Marinkovic, L. Ma, J. C. Zheng, K. Sasaki, J. Am. Chem. Soc., 2024, 146, 3010 |
48. | C. Wagner, G. Laplanche, Acta Mater., 2023, 244, 118541 |
49. | E. Ma, X. Wu, Nat. Commun., 2019, 10, 5623 |
50. | T. Zirari, V. Trabadelo, Heliyon, 2024, 10, e25867 |
51. | M. Garg, H. S. Grewal, R. K. Sharma, H. S. Arora, ACS Omega, 2022, 7, 12589 |
52. | P. Muhammad, A. Zada, J. Rashid, S. Hanif, Y. Gao, C. Li, Y. Li, K. Fan, Y. Wang, Adv. Funct. Mater., 2024, 34, 2314686 |
53. | Y. Yang, Z. Jia, Q. Wang, Y. Liu, L. Sun, B. Sun, J. Kuang, S. Dai, J. He, S. Liu, L. Duan, H. Tang, L.-C. Zhang, J. J. Kruzic, J. Lu, B. Shen, Energy Environ. Sci., 2024, 17, 5854 |
54. | Y. Chen, Z. Lai, X. Zhang, Z. Fan, Q. He, C. Tan, H. Zhang, Nat. Rev. Chem., 2020, 4, 243 |
55. | H. Chen, M. Zhang, Y. Wang, K. Sun, L. Wang, Z. Xie, Y. Shen, X. Han, L. Yang, X. Zou, Nano Res., 2022, 15, 10194 |
56. | H. Wang, P. Y. Yang, W. J. Zhao, S. H. Ma, J. H. Hou, Q. F. He, C. L. Wu, H. A. Chen, Q. Wang, Q. Cheng, B. S. Guo, J. C. Qiao, W. J. Lu, S. J. Zhao, X. D. Xu, C. T. Liu, Y. Liu, C. W. Pao, Y. Yang, Nat. Commun., 2024, 15, 6782 |
57. | H. Wang, Q.-F. He, Y. Yang, Rare Met., 2022, 41, 1989 |
58. | Q. Zhang, M. Song, G. Luo, T. Shen, H. Hu, D. Wang, Chem. Mater., 2024, 36, 10967 |
59. | Y. Nakaya, S. Furukawa, Chem. Sci., 2024, 15, 12644 |
60. | Y. Yao, Q. Dong, A. Brozena, J. Luo, J. Miao, M. Chi, C. Wang, I. G. Kevrekidis, Z. J. Ren, J. Greeley, G. Wang, A. Anapolsky, L. Hu, Science, 2022, 376, eabn3103 |
61. | Y. Yan, J. S. Du, K. D. Gilroy, D. Yang, Y. Xia, H. Zhang, Adv. Mater., 2017, 29, 1605997 |
62. | Y. Sun, S. Dai, Nat. Synth., 2024, 3, 1457 |
63. | M. Cui, C. Yang, S. Hwang, M. Yang, S. Overa, Q. Dong, Y. Yao, A. H. Brozena, D. A. Cullen, M. Chi, T. F. Blum, D. Morris, Z. Finfrock, X. Wang, P. Zhang, V. G. Goncharov, X. Guo, J. Luo, Y. Mo, F. Jiao, L. Hu, Sci. Adv., 2022, 8, eabm4322 |
64. | S. A. Kube, J. Schroers, Scr. Mater., 2020, 186, 392 |
65. | Y. Nakaya, E. Hayashida, H. Asakura, S. Takakusagi, S. Yasumura, K. I. Shimizu, S. Furukawa, J. Am. Chem. Soc., 2022, 144, 15944 |
66. | R. Zhang, Y. Zhang, B. Xiao, S. Zhang, Y. Wang, H. Cui, C. Li, Y. Hou, Y. Guo, T. Yang, J. Fan, C. Zhi, Angew. Chem. Int. Ed., 2024, 63, e202407589 |
67. | G. Feng, F. Ning, Y. Pan, T. Chen, J. Song, Y. Wang, R. Zou, D. Su, D. Xia, J. Am. Chem. Soc., 2023, 145, 11140 |
68. | G. Zhu, Y. Jiang, H. Yang, H. Wang, Y. Fang, L. Wang, M. Xie, P. Qiu, W. Luo, Adv. Mater., 2022, 34, e2110128 |
69. | T. Shen, D. Xiao, Z. Deng, S. Wang, L. An, M. Song, Q. Zhang, T. Zhao, M. Gong, D. Wang, Angew. Chem. Int. Ed., 2024, 63, e202403260 |
70. | H. Luan, X. Zhang, H. Ding, F. Zhang, J. H. Luan, Z. B. Jiao, Y. C. Yang, H. Bu, R. Wang, J. Gu, C. Shao, Q. Yu, Y. Shao, Q. Zeng, N. Chen, C. T. Liu, K. F. Yao, Nat. Commun., 2022, 13, 2183 |
71. | X. Yu, X. Ding, Y. Yao, W. Gao, C. Wang, C. Wu, C. Wu, B. Wang, L. Wang, Z. Zou, Adv. Mater., 2024, 36, e2312942 |
72. | M. W. Glasscott, A. D. Pendergast, S. Goines, A. R. Bishop, A. T. Hoang, C. Renault, J. E. Dick, Nat. Commun., 2019, 10, 2650 |
73. | X. Tan, J. Wang, Y. Xiao, Y. Guo, W. He, B. Du, H. Cui, C. Wang, Adv. Mater., 2025, 37, e2414283 |
74. | F. Yang, J. Ye, L. Gao, J. Yu, Z. Yang, Y. Lu, C. Ma, Y. J. Zeng, H. Huang, Adv. Energy Mater., 2023, 13, 2301408 |
75. | Q. Yun, Y. Ge, Z. Shi, J. Liu, X. Wang, A. Zhang, B. Huang, Y. Yao, Q. Luo, L. Zhai, J. Ge, Y. Peng, C. Gong, M. Zhao, Y. Qin, C. Ma, G. Wang, Q. Wa, X. Zhou, Z. Li, S. Li, W. Zhai, H. Yang, Y. Ren, Y. Wang, L. Li, X. Ruan, Y. Wu, B. Chen, Q. Lu, Z. Lai, Q. He, X. Huang, Y. Chen, H. Zhang, Chem. Rev., 2023, 123, 13489 |
76. | J. Liang, F. Ma, S. Hwang, X. Wang, J. Sokolowski, Q. Li, G. Wu, D. Su, Joule, 2019, 3, 956 |
77. | L. Li, Z. Zhang, SmartMat, 2024, 5, e1239 |
78. | H. Minamihara, K. Kusada, T. Yamamoto, T. Toriyama, Y. Murakami, S. Matsumura, L. S. R. Kumara, O. Sakata, S. Kawaguchi, Y. Kubota, O. Seo, S. Yasuno, H. Kitagawa, J. Am. Chem. Soc., 2023, 145, 17136 |
79. | F. Shi, P. Tieu, H. Hu, J. Peng, W. Zhang, F. Li, P. Tao, C. Song, W. Shang, T. Deng, W. Gao, X. Pan, J. Wu, Nat. Commun., 2024, 15, 5084 |
80. | E. Zhu, W. Hu, J. Dong, J. Chen, Y. Li, L. Wang, Adv. Sustainable Syst., 2024, 8, 2400224 |
81. | C. S. Hsu, J. Wang, Y. C. Chu, J. H. Chen, C. Y. Chien, K. H. Lin, L. D. Tsai, H. C. Chen, Y. F. Liao, N. Hiraoka, Y. C. Cheng, H. M. Chen, Nat. Commun., 2023, 14, 5245 |
82. | Q. Zhou, H. Shou, S. Qiao, Y. Cao, P. Zhang, S. Wei, S. Chen, X. Wu, L. Song, J. Am. Chem. Soc., 2024, 146, 15167 |
83. | G. L. W. Hart, T. Mueller, C. Toher, S. Curtarolo, Nat. Rev. Mater., 2021, 6, 730 |
84. | M. Kim, E. Batsa Tetteh, O. A. Krysiak, A. Savan, B. Xiao, T. H. Piotrowiak, C. Andronescu, A. Ludwig, T. Dong Chung, W. Schuhmann, Angew. Chem. Int. Ed., 2023, 62, e202310069 |
85. | T. A. A. Batchelor, T. Loffler, B. Xiao, O. A. Krysiak, V. Strotkotter, J. K. Pedersen, C. M. Clausen, A. Savan, Y. Li, W. Schuhmann, J. Rossmeisl, A. Ludwig, Angew. Chem. Int. Ed., 2021, 60, 6932 |
86. | E. Suhr, O. A. Krysiak, V. Strotkötter, F. Thelen, W. Schuhmann, A. Ludwig, Adv. Eng. Mater., 2023, 25, 2300550 |
87. | B. Xiao, X. Wang, A. Savan, A. Ludwig, Nano Res., 2022, 15, 4827 |
88. | L. Banko, E. B. Tetteh, A. Kostka, T. H. Piotrowiak, O. A. Krysiak, U. Hagemann, C. Andronescu, W. Schuhmann, A. Ludwig, Adv. Mater., 2023, 35, e2207635 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic diagram of lattice engineering of HEA nanomaterials involved in this review.
a,b Scanning transmission electron microscopy (STEM) images of PtIrCuNiCr HEA NPs. All scale bars represent 2 nm. c The enlarged XRD patterns of the PtIrCuNiCr HEA NPs and commercial Pt/C. d Normal strain profile and strain mapping along εxx direction of PtIrCuNiCr HEA NPs. e The HER activity volcano plot using lattice strain and atomic radius as descriptors. f The OER activity volcano plot using lattice strain and atomic radius as descriptors. g Linear sweep voltammetry (LSV) curves for HER and OER of PtIrCuNiCr HEA NPs and reference samples, respectively.[40] Copyright 2023, Elsevier. h STEM image, i Fast Fourier transform (FFT) pattern, inverse FFT (IFFT) pattern of (
a Schematic illustration of sequential transformation of eutectic dual-phase high-entropy alloys (EHEAs) into HEAs and the synthesis of P doped HEAs. b XRD patterns of EHEAs, undoped HEAs, and P doped HEAs. c The expansion profiles induced by P doping with different doping patterns. d STEM images and the corresponding strain maps of undoped HEAs and P doped HEAs, respectively. e High-resolution TEM (HRTEM) images of the typical interface areas of undoped HEAs and P doped HEA. f LSV curves for HER of undoped HEAs, P doped HEAs, and Pt/C. g The projected density of states of *H covered undoped HEAs and P doped HEA.[45]Copyright 2023, Elsevier. h Schematic illustration of the fabrication process of O doped HEA NPs and the role of interstitial O. i STEM image with the corresponding FFT and GPA images of O doped HEA. j LSV curves for HER of O-doped HEAs and Pt/C. k LSV curves for OER of O doped HEAs and RuO2.[46] Copyright 2024, Wiley-VCH.
a Comparison of lattice structures in different alloy systems. A, B, C, D, and E represent different elements.[58] Copyright 2024, American Chemical Society. b Free energy curves comparing HEAs and HEIs. c Temperature-dependent free energy change (ΔGmix) for HEAs and HEIs.[59] Copyright 2024, The Royal Society of Chemistry. d Temperature-time-ordering diagram showing the kinetic pathways from high-temperature mixing state to metallic glass, solution mixing, intermetallic formation, and phase separation, respectively.[60] Copyright 2022, Science. e The XRD pattern of PtIrFeCoCu HEI NPs supported on C (PIFCC-HEI/C). f STEM image and the corresponding FFT image of one typical HEI NP. g The enlarged region in f and the corresponding atomic-resolution EDS mapping image. h Pt L3-edge X-ray absorption near edge structure (XANES) spectra of PIFCC-HEI, Pt foil, and PtO2. i LSV curves for ORR of PIFCC-HEI/C, PIFCC-HEA/C, Pt/C and C. j Polarization and power density curves of the H2/O2 fuel cell with PIFCC-HEI/C and commercial Pt/C as the cathode, respectively.[67] Copyright 2023, American Chemical Society. k Schematic illustration of HEI structures with the distribution of active sites (Pt and Pd) and elements that limit sintering (Ir and Ru). l XRD patterns of Pt/C, Pt2FeCu/C and HEI/C. m The enlarged STEM image of one typical HEI NP. n The wavelet transform (WT) analyses of k3-weighted extended X-ray absorption fine structure (EXAFS) of Pt-L3 and Pd-K edges of HEI/C. o Comparison of *CO adsorption sites on Pt(111) and HEI(110) facets. p The adsorption energy values of *CO on different sites of HEI(110) and Pt(111). q The energy barriers for the diffusion of *CO at different transition states on HEI(110) facet.[69] Copyright 2024, Wiley-VCH.
a Schematic representation of the progress from monometallic crystals to HEAs, metallic glasses, and high-entropy metallic glasses (HEMGs). b Schematic illustration of the transformation of high-entropy hydrotalcite into HEMG. c EDS mapping images of metallic elements of HEMG. d HRTEM image and the corresponding FFT pattern (inset) of HEMG. e Synchrotron X-ray scattering patterns for MnNiZrRuCe HEMG and HEA. f XANES spectra of Ru K-edge of HEMG, high-entropy hydrotalcite, Ru foil, and RuO2. g The WT analyses of k3-weighted EXAFS of Ru edge of high-entropy hydrotalcite and HEMGs.[71] Copyright 2024, Wiley-VCH. h Schematic illustration of the electrochemical synthesis process of HEMG NPs. i STEM image with the corresponding EDS mapping images, TEM image, and selected area electron diffraction (SAED) pattern of a typical CoFeNiLaPt HEMG NP. All scale bars represent 500 nm.[72] Copyright 2024, Springer Nature. j The TEM image with SAED pattern (inset), STEM image, HRTEM image, and corresponding EDS mapping images of porous PdCuLaYMnW HEMGs. k XRD patterns of HEMGs, PdCuLaY, PdCuMnW, PdCu, and Pd/C. l LSV curves for FAOR of various electrocatalysts. m CO poisoning test of HEMGs. n In-situ Raman spectra of HEMGs (left) and PdCu alloys (right) for FAOR.[73] Copyright 2024, Wiley-VCH.