Mingxiang Liu, Peitao Xie, Jianming Zhao, Hanqing Guo, Wen Feng, Runhua Fan, Yao Liu. Two-dimensional MXene/MMT composite metafilms with negative permittivity[J]. Materials Lab, 2025, 4(2): 240016. doi: 10.54227/mlab.20240016
Citation: Mingxiang Liu, Peitao Xie, Jianming Zhao, Hanqing Guo, Wen Feng, Runhua Fan, Yao Liu. Two-dimensional MXene/MMT composite metafilms with negative permittivity[J]. Materials Lab, 2025, 4(2): 240016. doi: 10.54227/mlab.20240016

RESEARCH ARTICLE

Two-dimensional MXene/MMT composite metafilms with negative permittivity

More Information
  • Corresponding authors: xiepeitao1991@qdu.edu.cn (P. Xie); fengwen01@shandong.cn (W. Feng); liuyao@sdu.edu.cn (Y. Liu)
  • The applications of metamaterials in the field of electromagnetic devices have put forward requirements on their size and flexibility, the development of metamaterials has gradually shifted to two-dimensional (2D) systems, and further exploration is needed for 2D random metamaterials. Herein, MXene and montmorillonite (MMT) are stacked layer by layer to construct the MXene/MMT composite metafilms which has good flexibility and ultra-thin thickness. With the increase of the volume fraction of MXene, the conductive mechanism of the metafilms changes from hopping conduction to metal-like conduction which proves the occurrence of percolation, and the percolation threshold is 8.69 vol%. The negative permittivity is obtained in the material due to the plasma oscillations of free electrons explained by Drude model, which can be regulated by changing the layer spacing between MXene nanosheets. Besides, the electromagnetic interference (EMI) shielding effectiveness (SET) of the metafilms is more than 30 dB in the frequency range of 8.2-12.4 GHz when the volume fraction of MXene is greater than 31.25 vol%, and reached 48.6 dB at 8.2 GHz when the MXene volume fraction is 47.62 vol%. This work fills the gap in study of the 2D random metamaterials and can expand the potential applications of metamaterials.


  • 加载中
  • 1. T. J. Cui, S. Liu, L. Zhang, J. Mater. Chem. C, 2017, 5, 3644
    2. Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Nat. Commun., 2022, 13, 1227
    3. J. Gong, C. Li, M. R. Wasielewski, Chem. Soc. Rev., 2019, 48, 1862
    4. D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, Science, 2004, 305, 788
    5. W. J. Padilla, D. N. Basov, D. R. Smith, Mater. Today, 2006, 9, 28
    6. S. H. Lee, C. M. Park, Y. M. Seo, C. K. Kim, Phys. Rev. B, 2010, 81, 241102
    7. A. A. Zharov, I. V. Shadrivov, Y. S. Kivshar, Phys. Rev. Lett., 2003, 91, 037401
    8. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, Phys. Rev. Lett., 2008, 100, 207402
    9. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, Science, 2010, 328, 337
    10. R. Zhou, Y. Wang, Z. Liu, Y. Pang, J. Chen, J. Kong, Nano-Micro Lett., 2022, 14, 122
    11. M. Liu, H. Wu, Y. Wu, P. Xie, R. A. Pashameah, H. M. Abo-Dief, S. M. El-Bahy, Y. Wei, G. Li, W. Li, G. Liang, C. Liu, K. Sun, R. Fan, Adv. Compos. Hybrid Mater., 2022, 5, 2021
    12. Z. Shi, R. Fan, Z. Zhang, L. Qian, M. Gao, M. Zhang, L. Zheng, X. Zhang, L. Yin, Adv. Mater., 2012, 24, 2349
    13. L. Sun, Z. Shi, B. He, H. Wang, S. Liu, M. Huang, J. Shi, D. Dastan, H. Wang, Adv. Funct. Mater., 2021, 31, 2100280
    14. C. Cheng, Y. Liu, R. Ma, R. Fan, Compos. Part Appl. Sci. Manuf., 2022, 155, 106842
    15. Y. Shi, K. Pan, M. Gerard Moloney, J. Qiu, Compos. Part Appl. Sci. Manuf., 2021, 144, 106351
    16. Z. Yu, R. Zhou, M. Ma, R. Zhu, P. Miao, P. Liu, J. Kong, J. Mater. Sci. Technol., 2022, 114, 206
    17. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, Z. Gaburro, Science, 2011, 334, 333
    18. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Nat. Mater., 2012, 11, 426
    19. Q. Song, X. Liu, C.-W. Qiu, P. Genevet, Appl. Phys. Rev., 2022, 9, 011311
    20. E. Cortés, F. J. Wendisch, L. Sortino, A. Mancini, S. Ezendam, S. Saris, L. De S. Menezes, A. Tittl, H. Ren, S. A. Maier, Chem. Rev., 2022, 122, 15082
    21. Q. Tan, B. Zheng, T. Cai, C. Qian, R. Zhu, X. Li, H. Chen, Adv. Sci., 2022, 9, 2201397
    22. A. Li, S. Singh, D. Sievenpiper, Nanophotonics, 2018, 7, 989
    23. K. Sun, W. Duan, Y. Lei, Z. Wang, J. Tian, P. Yang, Q. He, M. Chen, H. Wu, Z. Zhang, R. Fan, Compos. Part Appl. Sci. Manuf., 2022, 156, 106854
    24. Y. Zhou, Y. Qu, L. Yin, W. Cheng, Y. Huang, R. Fan, Compos. Sci. Technol., 2022, 223, 109415
    25. Y. Du, X. Wang, X. Dai, W. Lu, Y. Tang, J. Kong, J. Mater. Sci. Technol., 2022, 100, 1
    26. B. Zhao, Z. Ma, Y. Sun, Y. Han, J. Gu, Small Struct., 2022, 3, 2200162
    27. M. Huang, L. Wang, B. Zhao, G. Chen, R. Che, J. Mater. Sci. Technol., 2023, 138, 149
    28. X. Li, Z. Wu, W. You, L. Yang, R. Che, Nano-Micro Lett., 2022, 14, 73
    29. Q. Du, Q. Men, R. Li, Y. Cheng, B. Zhao, R. Che, Small, 2022, 18, 2203609
    30. M. Huang, L. Wang, X. Li, Z. Wu, B. Zhao, K. Pei, X. Liu, X. Zhang, R. Che, Small, 2022, 18, 2201587
    31. Y. Zhang, Z. Ma, K. Ruan, J. Gu, Nano Res., 2022, 15, 5601
    32. W. Yang, Q. Han, W. Li, M. Wu, J. Yao, M. Zhao, X. Lu, Energy Storage Mater., 2022, 52, 29
    33. J. Hao, W. Wang, J. Zhao, H. Che, L. Chen, X. Sui, Chin. Chem. Lett., 2022, 33, 2291
    34. Y. Ma, Y. Cheng, J. Wang, S. Fu, M. Zhou, Y. Yang, B. Li, X. Zhang, C. Nan, InfoMat, 2022, 4, e12328
    35. E. Piatti, A. Arbab, F. Galanti, T. Carey, L. Anzi, D. Spurling, A. Roy, A. Zhussupbekova, K. A. Patel, J. M. Kim, D. Daghero, R. Sordan, V. Nicolosi, R. S. Gonnelli, F. Torrisi, Nat. Electron., 2021, 4, 893
    36. V. K. Sangwan, M. C. Hersam, Annu. Rev. Phys. Chem., 2018, 69, 299
    37. A. S. R. Bati, M. Hao, T. J. Macdonald, M. Batmunkh, Y. Yamauchi, L. Wang, J. G. Shapter, Small, 2021, 17, 2101925
    38. J. Hao, S. Ma, Y. Hou, W. Wang, X. Dai, X. Sui, Electrochimica Acta, 2022, 423, 140581
    39. T. Zhou, C. Wu, Y. Wang, A. P. Tomsia, M. Li, E. Saiz, S. Fang, R. H. Baughman, L. Jiang, Q. Cheng, Nat. Commun., 2020, 11, 2077
    40. B. Ji, S. Fan, X. Ma, K. Hu, L. Wang, C. Luan, J. Deng, L. Cheng, L. Zhang, Carbon, 2020, 165, 150
    41. S. Zhao, H. Zhang, J. Luo, Q. Wang, B. Xu, S. Hong, Z. Yu, ACS Nano, 2018, 12, 11193
    42. B. Dai, B. Zhao, X. Xie, T. Su, B. Fan, R. Zhang, R. Yang, J. Mater. Chem. C, 2018, 6, 5690
    43. H. Wu, Y. Zhong, Y. Tang, Y. Huang, G. Liu, W. Sun, P. Xie, D. Pan, C. Liu, Z. Guo, Adv. Compos. Hybrid Mater., 2022, 5, 419
    44. Z. Wang, K. Sun, P. Xie, Y. Liu, Q. Gu, R. Fan, Compos. Sci. Technol., 2020, 188, 107969
    45. Z. Zhang, M. Liu, M. M. Ibrahim, H. Wu, Y. Wu, Y. Li, G. A. M. Mersal, I. H. El Azab, S. M. El-Bahy, M. Huang, Y. Jiang, G. Liang, P. Xie, C. Liu, Adv. Compos. Hybrid Mater., 2022, 5, 1054
    46. P. Xie, Z. Zhang, Z. Wang, K. Sun, R. Fan, Research, 2019, 2019, 1021368
    47. C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo, X. Li, L. An, Y. Lei, Y. Yin, Z. Guo, Nanoscale, 2017, 9, 5779
    48. M. Liu, X. Lan, H. Zhang, P. Xie, N. Wu, H. Yuan, K. Sui, R. Fan, C. Liu, J. Mater. Sci.: Mater. Electron., 2021, 32, 15995
    49. Y. Han, K. Ruan, J. Gu, Nano Res., 2022, 15, 4747
    50. L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan, J. Gu, Carbon Energy, 2022, 4, 200
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Information

Article Metrics

Article views(85) PDF downloads(41) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint