Citation: | Mingxiang Liu, Peitao Xie, Jianming Zhao, Hanqing Guo, Wen Feng, Runhua Fan, Yao Liu. Two-dimensional MXene/MMT composite metafilms with negative permittivity[J]. Materials Lab, 2025, 4(2): 240016. doi: 10.54227/mlab.20240016 |
The applications of metamaterials in the field of electromagnetic devices have put forward requirements on their size and flexibility, the development of metamaterials has gradually shifted to two-dimensional (2D) systems, and further exploration is needed for 2D random metamaterials. Herein, MXene and montmorillonite (MMT) are stacked layer by layer to construct the MXene/MMT composite metafilms which has good flexibility and ultra-thin thickness. With the increase of the volume fraction of MXene, the conductive mechanism of the metafilms changes from hopping conduction to metal-like conduction which proves the occurrence of percolation, and the percolation threshold is 8.69 vol%. The negative permittivity is obtained in the material due to the plasma oscillations of free electrons explained by Drude model, which can be regulated by changing the layer spacing between MXene nanosheets. Besides, the electromagnetic interference (EMI) shielding effectiveness (SET) of the metafilms is more than 30 dB in the frequency range of 8.2-12.4 GHz when the volume fraction of MXene is greater than 31.25 vol%, and reached 48.6 dB at 8.2 GHz when the MXene volume fraction is 47.62 vol%. This work fills the gap in study of the 2D random metamaterials and can expand the potential applications of metamaterials.
1. | T. J. Cui, S. Liu, L. Zhang, J. Mater. Chem. C, 2017, 5, 3644 |
2. | Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Nat. Commun., 2022, 13, 1227 |
3. | J. Gong, C. Li, M. R. Wasielewski, Chem. Soc. Rev., 2019, 48, 1862 |
4. | D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, Science, 2004, 305, 788 |
5. | W. J. Padilla, D. N. Basov, D. R. Smith, Mater. Today, 2006, 9, 28 |
6. | S. H. Lee, C. M. Park, Y. M. Seo, C. K. Kim, Phys. Rev. B, 2010, 81, 241102 |
7. | A. A. Zharov, I. V. Shadrivov, Y. S. Kivshar, Phys. Rev. Lett., 2003, 91, 037401 |
8. | N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, Phys. Rev. Lett., 2008, 100, 207402 |
9. | T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, Science, 2010, 328, 337 |
10. | R. Zhou, Y. Wang, Z. Liu, Y. Pang, J. Chen, J. Kong, Nano-Micro Lett., 2022, 14, 122 |
11. | M. Liu, H. Wu, Y. Wu, P. Xie, R. A. Pashameah, H. M. Abo-Dief, S. M. El-Bahy, Y. Wei, G. Li, W. Li, G. Liang, C. Liu, K. Sun, R. Fan, Adv. Compos. Hybrid Mater., 2022, 5, 2021 |
12. | Z. Shi, R. Fan, Z. Zhang, L. Qian, M. Gao, M. Zhang, L. Zheng, X. Zhang, L. Yin, Adv. Mater., 2012, 24, 2349 |
13. | L. Sun, Z. Shi, B. He, H. Wang, S. Liu, M. Huang, J. Shi, D. Dastan, H. Wang, Adv. Funct. Mater., 2021, 31, 2100280 |
14. | C. Cheng, Y. Liu, R. Ma, R. Fan, Compos. Part Appl. Sci. Manuf., 2022, 155, 106842 |
15. | Y. Shi, K. Pan, M. Gerard Moloney, J. Qiu, Compos. Part Appl. Sci. Manuf., 2021, 144, 106351 |
16. | Z. Yu, R. Zhou, M. Ma, R. Zhu, P. Miao, P. Liu, J. Kong, J. Mater. Sci. Technol., 2022, 114, 206 |
17. | N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, Z. Gaburro, Science, 2011, 334, 333 |
18. | S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Nat. Mater., 2012, 11, 426 |
19. | Q. Song, X. Liu, C.-W. Qiu, P. Genevet, Appl. Phys. Rev., 2022, 9, 011311 |
20. | E. Cortés, F. J. Wendisch, L. Sortino, A. Mancini, S. Ezendam, S. Saris, L. De S. Menezes, A. Tittl, H. Ren, S. A. Maier, Chem. Rev., 2022, 122, 15082 |
21. | Q. Tan, B. Zheng, T. Cai, C. Qian, R. Zhu, X. Li, H. Chen, Adv. Sci., 2022, 9, 2201397 |
22. | A. Li, S. Singh, D. Sievenpiper, Nanophotonics, 2018, 7, 989 |
23. | K. Sun, W. Duan, Y. Lei, Z. Wang, J. Tian, P. Yang, Q. He, M. Chen, H. Wu, Z. Zhang, R. Fan, Compos. Part Appl. Sci. Manuf., 2022, 156, 106854 |
24. | Y. Zhou, Y. Qu, L. Yin, W. Cheng, Y. Huang, R. Fan, Compos. Sci. Technol., 2022, 223, 109415 |
25. | Y. Du, X. Wang, X. Dai, W. Lu, Y. Tang, J. Kong, J. Mater. Sci. Technol., 2022, 100, 1 |
26. | B. Zhao, Z. Ma, Y. Sun, Y. Han, J. Gu, Small Struct., 2022, 3, 2200162 |
27. | M. Huang, L. Wang, B. Zhao, G. Chen, R. Che, J. Mater. Sci. Technol., 2023, 138, 149 |
28. | X. Li, Z. Wu, W. You, L. Yang, R. Che, Nano-Micro Lett., 2022, 14, 73 |
29. | Q. Du, Q. Men, R. Li, Y. Cheng, B. Zhao, R. Che, Small, 2022, 18, 2203609 |
30. | M. Huang, L. Wang, X. Li, Z. Wu, B. Zhao, K. Pei, X. Liu, X. Zhang, R. Che, Small, 2022, 18, 2201587 |
31. | Y. Zhang, Z. Ma, K. Ruan, J. Gu, Nano Res., 2022, 15, 5601 |
32. | W. Yang, Q. Han, W. Li, M. Wu, J. Yao, M. Zhao, X. Lu, Energy Storage Mater., 2022, 52, 29 |
33. | J. Hao, W. Wang, J. Zhao, H. Che, L. Chen, X. Sui, Chin. Chem. Lett., 2022, 33, 2291 |
34. | Y. Ma, Y. Cheng, J. Wang, S. Fu, M. Zhou, Y. Yang, B. Li, X. Zhang, C. Nan, InfoMat, 2022, 4, e12328 |
35. | E. Piatti, A. Arbab, F. Galanti, T. Carey, L. Anzi, D. Spurling, A. Roy, A. Zhussupbekova, K. A. Patel, J. M. Kim, D. Daghero, R. Sordan, V. Nicolosi, R. S. Gonnelli, F. Torrisi, Nat. Electron., 2021, 4, 893 |
36. | V. K. Sangwan, M. C. Hersam, Annu. Rev. Phys. Chem., 2018, 69, 299 |
37. | A. S. R. Bati, M. Hao, T. J. Macdonald, M. Batmunkh, Y. Yamauchi, L. Wang, J. G. Shapter, Small, 2021, 17, 2101925 |
38. | J. Hao, S. Ma, Y. Hou, W. Wang, X. Dai, X. Sui, Electrochimica Acta, 2022, 423, 140581 |
39. | T. Zhou, C. Wu, Y. Wang, A. P. Tomsia, M. Li, E. Saiz, S. Fang, R. H. Baughman, L. Jiang, Q. Cheng, Nat. Commun., 2020, 11, 2077 |
40. | B. Ji, S. Fan, X. Ma, K. Hu, L. Wang, C. Luan, J. Deng, L. Cheng, L. Zhang, Carbon, 2020, 165, 150 |
41. | S. Zhao, H. Zhang, J. Luo, Q. Wang, B. Xu, S. Hong, Z. Yu, ACS Nano, 2018, 12, 11193 |
42. | B. Dai, B. Zhao, X. Xie, T. Su, B. Fan, R. Zhang, R. Yang, J. Mater. Chem. C, 2018, 6, 5690 |
43. | H. Wu, Y. Zhong, Y. Tang, Y. Huang, G. Liu, W. Sun, P. Xie, D. Pan, C. Liu, Z. Guo, Adv. Compos. Hybrid Mater., 2022, 5, 419 |
44. | Z. Wang, K. Sun, P. Xie, Y. Liu, Q. Gu, R. Fan, Compos. Sci. Technol., 2020, 188, 107969 |
45. | Z. Zhang, M. Liu, M. M. Ibrahim, H. Wu, Y. Wu, Y. Li, G. A. M. Mersal, I. H. El Azab, S. M. El-Bahy, M. Huang, Y. Jiang, G. Liang, P. Xie, C. Liu, Adv. Compos. Hybrid Mater., 2022, 5, 1054 |
46. | P. Xie, Z. Zhang, Z. Wang, K. Sun, R. Fan, Research, 2019, 2019, 1021368 |
47. | C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo, X. Li, L. An, Y. Lei, Y. Yin, Z. Guo, Nanoscale, 2017, 9, 5779 |
48. | M. Liu, X. Lan, H. Zhang, P. Xie, N. Wu, H. Yuan, K. Sui, R. Fan, C. Liu, J. Mater. Sci.: Mater. Electron., 2021, 32, 15995 |
49. | Y. Han, K. Ruan, J. Gu, Nano Res., 2022, 15, 4747 |
50. | L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan, J. Gu, Carbon Energy, 2022, 4, 200 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic of the process for fabricating MXene/MMT composite metafilms.
a, c TEM image of MXene and MMT nanosheets. b, d SAED image of MXene and MMT nanosheets. e SEM image of MXene/MMT composite metafilms when the volume fraction of MXene is 4.35 vol%, f 18.52 vol% and energy dispersive spectrometer of MXene/MMT composite metafilms and g 47.62 vol%.
a XRD patterns, b FTIR spectra and c XPS spectra of Ti3AlC2, MMT, MXene nanosheets and MXene/MMT composite metafilms. d Ti 2p spectra of MXene and MXene/MMT composite metafilms.
a Frequency dispersion of ac conductivity for the MMT and MXene/MMT composite metafilms with different MXene volume fraction, b the variation of ac conductivity at 100 kHz with different MXene volume fraction and c, d ac conductivity at 100 kHz analyzed by the percolation theory.
a, b, c Frequency dependence of permittivity for the MMT and MXene/MMT composite metafilms with different MXene volume fraction and d the variation of permittivity at 100 kHz with MXene volume fraction.
Microstructure model diagram of MXene/MMT composite metafilms (a MXene volume fraction below 10.20 vol%; b MXene fraction greater than 18.52 vol%).
a, b Frequency dependence of the reactance for the MXene/MMT composite metafilms with different MXene volume fraction. c, d Nyquist plots for the MXene/MMT composite metafilms with different MXene volume fraction and equivalent circuit analysis.
a Frequency dispersion of SET for MXene/MMT composite metafilms with different MXene volume fraction. b, c Average SER, SEA, SEM, SET, d R, T and A in the frequency range of 8.2-12.4 GHz for MXene/MMT composite metafilms with different MXene volume fraction.