Citation: | Wenjuan Zhang, Peng Xiong, Rui Wang, Yangyang Liu, Longhai Zhang, Chaofeng Zhang. Electrolytes for aqueous Zn-ion batteries working in harsh environment: applications and perspective[J]. Materials Lab, 2025, 4(2): 240015. doi: 10.54227/mlab.20240015 |
Aqueous Zn-ion batteries (AZIBs) have garnered significant attention in recent years due to their high safety, low cost, environmental friendliness, and excellent ionic conductivity. However, the application of AZIBs in harsh environments, such as high and low temperatures, poses significant challenges for electrolyte stability and overall battery performance. Addressing these challenges is crucial for expanding the operational scope of AZIBs and enabling their deployment in various energy storage scenarios. This review systematically examines the challenges faced by AZIBs electrolytes under extreme conditions and highlights recent advancements in addressing these issues. We provide a comprehensive analysis of the problems and strategies associated with AZIBs electrolytes in harsh environments, with a particular focus on high- and low-temperature scenarios. Specifically, we discuss various approaches, including the use of organic additives, hydrated eutectic electrolytes (HEEs), hydrogel electrolytes, and "water-in-salt" (WIS) electrolytes, to address these challenges. Furthermore, we outline key strategies for the rational design of AZIBs electrolytes and highlight future directions for their development to enhance performance under extreme conditions. By addressing these critical aspects, this review aims to inspire innovative research and development of AZIBs for applications in harsh environments, paving the way for their broader adoption in next-generation energy storage systems.
1. | C. Wang, X. Sun, Engineering, 2023, 21, 32 |
2. | Y. Chen, J. Zhao, Y. Wang, ACS Appl. Energy. Mater., 2020, 3, 9058 |
3. | C. Jia, X. Zhang, S. Liang, Y. Fu, W. Liu, J. Chen, X. Liu, L. Zhang, J. Power Sources, 2022, 548, 232072 |
4. | M. Chen, S. Xie, X. Zhao, W. Zhou, Y. Li, J. Zhang, Z. Chen, D. Chao, Energy Storage Mater., 2022, 51, 683 |
5. | H. Zhao, W.-Y. A. Lam, K. l. Ao, Y. Xian, Y. Ren, L. Si, Z. Wei, J. Wang, W. A. Daoud, J. Electrochem. Soc., 2022, 169, 120518 |
6. | K. M. Abraham, J. Electrochem. Soc., 2023, 170, 110508 |
7. | Y. Mao, Y. Chen, M. Chen, Batteries, 2024, 10, 307 |
8. | K. Hua, L. Zhang, Q. Ma, H. Li, R. Wang, P. Xiong, S. Zhang, T. Zhou, Y. Liu, C. Zhang, Chem. Eng. J., 2024, 498, 155289 |
9. | H. Bao, H. Guo, X. Zhang, Z. Tian, J. Huang, T. Liu, F. Lai, The Chemical Record, 2023, 24, 2300212 |
10. | J. Li, P. Ruan, X. Chen, S. Lei, B. Lu, Z. Chen, J. Zhou, ACS Energy Lett., 2023, 8, 2904 |
11. | N. Poompiew, N. Jirawatanaporn, M. Okhawilai, J. Qin, A. J. Román, C. Aumnate, T. A. Osswald, P. Potiyaraj, Electrochim. Acta, 2023, 466, 143076 |
12. | R. Cang, K. Ye, K. Zhu, D. Cao, ACS Sustain. Chem. Eng., 2023, 11, 5065 |
13. | P. Xiong, S. Zhang, R. Wang, L. Zhang, Q. Ma, X. Ren, Y. Gao, Z. Wang, Z. Guo, C. Zhang, Energy Environ. Sci., 2023, 16, 3181 |
14. | Z. Liu, R. Wang, Y. Gao, S. Zhang, J. Wan, J. Mao, L. Zhang, H. Li, J. Hao, G. Li, L. Zhang, C. Zhang, Adv. Funct. Mater., 2023, 33, 2308463 |
15. | C. Wang, F. Yu, C. Chen, J. Xia, Y. Gan, J. Li, J. Yao, J. Zheng, X. Chen, Z. Wu, L. Lv, P. Liang, L. Shen, G. Ma, Y. Rao, L. Tao, H. Wang, J. Zhang, H. Wang, H. Wan, Mater. Today Energy, 2024, 41, 101530 |
16. | L. Zhang, J. Liu, Y. Zhai, S. Zhang, W. Wang, G. Li, L. Sun, H. Li, S. Qi, S. Chen, R. Wang, Q. Ma, J. Just, C. Zhang, Adv. Mater., 2024, 36, 2313835 |
17. | W. Wang, S. Zhang, L. Zhang, R. Wang, Q. Ma, H. Li, J. Hao, T. Zhou, J. Mao, C. Zhang, Adv. Mater., 2024, 36, 2400642 |
18. | Q. Ma, M. Cao, Z. Fu, R. Wang, P. Xiong, K. Hua, L. Zhang, T. Zhou, H. Li, C. Zhang, ACS Appl. Mater. Interfaces, 2024, 16, 35033 |
19. | L. Liu, Y. Liu, L. Zhang, R. Wang, Q. Ma, P. Xiong, C. Zhang, Energy Fuels, 2024, 38, 15998 |
20. | S. Liu, R. Zhang, C. Wang, J. Mao, D. Chao, C. Zhang, S. Zhang, Z. Guo, Angew. Chem. Int. Ed., 2024, 63, 2400045 |
21. | L. Sun, Z. Song, C. Deng, Q. Wang, F. Mo, H. Hu, G. Liang, Batteries, 2023, 9, 386 |
22. | L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang, J. A. Zapien, S. Chen, J. Fan, C. Zhi, Adv. Mater., 2020, 32, 1908121 |
23. | N. Xu, C. Yan, W. He, L. Xu, Z. Jiang, A. Zheng, H. Wu, M. Chen, G. Diao, J. Power Sources, 2022, 533, 231358 |
24. | S. Chai, F. Xu, R. Zhang, X. Wang, L. Zhai, X. Li, H.-J. Qian, L. Wu, H. Li, J. Am. Chem. Soc., 2021, 143, 21433 |
25. | Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan, K. Zhang, J. Chen, Nat. Commun., 2020, 11, 4463 |
26. | J. Wan, R. Wang, Z. Liu, S. Zhang, J. Hao, J. Mao, H. Li, D. Chao, L. Zhang, C. Zhang, Adv. Mater., 2023, 36, 2310623 |
27. | Y. Qiu, X. Zheng, R. Zhang, Q. Lin, M. Li, J. Luo, S. Yang, Z. Liu, Q. Wang, Y. Yu, C. Yang, Adv. Funct. Mater., 2023, 34, 2310825 |
28. | J. Yao, B. Zhang, X. Wang, L. Tao, J. Ji, Z. Wu, X. Liu, J. Li, Y. Gan, J. Zheng, L. Lv, X. Ji, H. Wang, J. Zhang, H. Wang, H. Wan, Angew. Chem. Int. Ed., 2024, 63, e202409986 |
29. | M. Wen, C. Yang, Q. Liu, J. Qiu, L. Zang, Small, 2023, 19, 2303348 |
30. | C. Lin, X. Yang, P. Xiong, H. Lin, L. He, Q. Yao, M. Wei, Q. Qian, Q. Chen, L. Zeng, Adv. Sci., 2022, 9, 2201433 |
31. | J. Zhou, H. Yuan, J. Li, W. Wei, Y. Li, J. Wang, L. Cheng, D. Zhang, Y. Ding, D. Chen, H. Wang, Chem. Eng. J., 2022, 442, 136218 |
32. | X. Li, H. Wang, X. Sun, J. Li, Y.-N. Liu, ACS Appl. Energy. Mater., 2021, 4, 12718 |
33. | S. Naskar, M. Deepa, ACS Appl. Mater. Interfaces, 2023, 15, 36262 |
34. | R. Wang, Q. Ma, L. Zhang, Z. Liu, J. Wan, J. Mao, H. Li, S. Zhang, J. Hao, L. Zhang, C. Zhang, Adv. Energy Mater., 2023, 13, 2302543 |
35. | X. Zhang, R. Wang, Z. Liu, Q. Ma, H. Li, Y. Liu, J. Hao, S. Zhang, J. Mao, C. Zhang, Adv. Energy Mater., 2024, 14, 2400314 |
36. | X. Luo, R. Wang, L. Zhang, Z. Liu, H. Li, J. Mao, S. Zhang, J. Hao, T. Zhou, C. Zhang, ACS Nano, 2024, 18, 12981 |
37. | R. Wang, Z. Liu, J. Wan, X. Zhang, D. Xu, W. Pan, L. Zhang, H. Li, C. Zhang, Q. Zhang, Adv. Energy Mater., 2024, 14, 2402900 |
38. | Z. Liu, R. Wang, Q. Ma, J. Wan, S. Zhang, L. Zhang, H. Li, Q. Luo, J. Wu, T. Zhou, J. Mao, L. Zhang, C. Zhang, Z. Guo, Adv. Funct. Mater., 2023, 34, 2214538 |
39. | S. Huang, S. He, Y. Li, S. Wang, X. Hou, Chem. Eng. J., 2023, 464, 142607 |
40. | T. Wu, W. Zhou, Y. Quan, M. Chen, Q. Tian, X. Han, J. Xu, J. Chen, J. Colloid Interface Sci., 2022, 628, 1 |
41. | Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng, T. Or, L. Yang, Q. Li, Q. Cu, R. Feng, Z. Zhang, Y. Nie, B. Ren, D. Luo, X. Wang, A. Yu, Z. Chen, Adv. Mater., 2022, 34, 2207344 |
42. | N. Wang, R. Zhou, Z. Zheng, T. Xin, M. Hu, B. Wang, J. Liu, Chem. Eng. J., 2021, 425, 131454 |
43. | X. Li, F. Ning, L. Luo, J. Wu, Y. Xiang, X. Wu, L. Xiong, X. Peng, RSC Adv., 2022, 12, 8394 |
44. | M. Qiu, P. Sun, K. Han, Z. Pang, J. Du, J. Li, J. Chen, Z. L. Wang, W. Mai, Nat. Commun., 2023, 14, 601 |
45. | S. Tian, T. Hwang, S. Malakpour Estalaki, Y. Tian, L. Zhou, T. Milazzo, S. Moon, S. Wu, R. Jian, K. Balkus, T. Luo, K. Cho, G. Xiong, Adv. Energy Mater., 2023, 13, 2300782 |
46. | Q.-H. Yang, L.-F. Wang, X.-Y. Wang, M.-M. Zhen, Rare Metals, 2024, 43, 2940 |
47. | F. Hu, M. Li, G. Gao, H. Fan, L. Ma, Batteries, 2022, 8, 214 |
48. | W. Zhang, Q. Dong, J. Wang, X. Han, W. Hu, Small Methods, 2023, 7, 2300324 |
49. | R. Wang, S. Xin, D. Chao, Z. Liu, J. Wan, P. Xiong, Q. Luo, K. Hua, J. Hao, C. Zhang, Adv. Funct. Mater., 2022, 32, 2207751 |
50. | X. Wu, Y. Li, C. Li, Z. He, Y. Xiang, L. Xiong, D. Chen, Y. Yu, K. Sun, Z. He, P. Chen, J. Power Sources, 2015, 300, 453 |
51. | L. Chen, K. Hu, K. Yang, M. Yanilmaz, X. Han, Y. Liu, X. Zhang, Carbon, 2023, 215, 118461 |
52. | Y. Shang, A. Rawal, D. Kundu, Mater. Today Energy, 2024, 46, 101702 |
53. | X. Guo, J. Zhou, C. Bai, X. Li, G. Fang, S. Liang, Mater. Today Energy, 2020, 16, 100396 |
54. | S. Zhao, R. Huojia, T. Tian, X. Liu, H. Tang, Q. Weng, T. Liu, Mater. Today Energy, 2024, 45, 101674 |
55. | Q. Wang, S. Wang, N. Wei, R. Wu, W. Zeng, L. Wen, Z. Chen, P. Gui, D. Liang, Chem. Eng. J., 2022, 450, 138132 |
56. | Z. Wang, J. Diao, J. N. Burrow, Z. W. Brotherton, N. A. Lynd, G. Henkelman, C. B. Mullins, Adv. Funct. Mater., 2023, 34, 2311271 |
57. | X. Shi, J. Wang, F. Yang, X. Liu, Y. Yu, X. Lu, Adv. Funct. Mater., 2022, 33, 2211917 |
58. | Y. Lee, D. Yun, J. Park, G. Hwang, D. Chung, M. Kim, J. Jeon, J. Power Sources, 2022, 547, 232007 |
59. | N. Wang, X. Dong, B. Wang, Z. Guo, Z. Wang, R. Wang, X. Qiu, Y. Wang, Angew. Chem. Int. Ed., 2020, 59, 14577 |
60. | B. Raza, X. Wang, A. Naveed, U. Shamraiz, Y. Huang, J. Wang, J. Power Sources, 2023, 572, 233025 |
61. | J. Wang, Y. Yang, Y. Wang, S. Dong, L. Cheng, Y. Li, Z. Wang, L. Trabzon, H. Wang, ACS Nano, 2022, 16, 15770 |
62. | Y. Liu, F. Li, J. Hao, H. Li, S. Zhang, J. Mao, T. Zhou, R. Wang, L. Zhang, C. Zhang, Adv. Funct. Mater., 2024, 34, 2400517 |
63. | Q. Liu, Z. Ji, F. Mo, W. Ling, J. Wang, H. Lei, M. Cui, Z. Zhang, Y. Liu, L. Cheng, W. Li, Y. Huang, ACS Appl. Energy. Mater., 2022, 5, 12448 |
64. | Y. Li, X. Yang, Y. He, F. Li, K. Ouyang, D. Ma, J. Feng, J. Huang, J. Zhao, M. Yang, Y. Wang, Y. Xie, H. Mi, P. Zhang, Adv. Funct. Mater., 2023, 34, 2307736 |
65. | Z. Liu, R. Wang, Q. Ma, H. Kang, L. Zhang, T. Zhou, C. Zhang, Carbon Neutralization, 2022, 1, 126 |
66. | Z. Zhou, L. Cao, L. Li, H. Pu, J. You, G. Yan, J. Long, Mater. Today Energy, 2024, 44, 101606 |
67. | R. Chen, X. Xu, S. Peng, J. Chen, D. Yu, C. Xiao, Y. Li, Y. Chen, X. Hu, M. Liu, H. Yang, I. Wyman, X. Wu, ACS Sustain. Chem. Eng., 2020, 8, 11501 |
68. | Y. Duan, T. Lv, K. Dong, F. Zheng, X. Li, Y. Qi, Z. Chen, W. Tang, Q. Sun, S. Cao, T. Chen, Chem. Eng. J., 2023, 474, 145551 |
69. | Z. Hou, Z. Lu, Q. Chen, B. Zhang, Energy Storage Mater., 2021, 42, 517 |
70. | F. Mo, H. Li, Z. Pei, G. Liang, L. Ma, Q. Yang, D. Wang, Y. Huang, C. Zhi, Sci. Bull., 2018, 63, 1077 |
71. | C. X. Zhao, L. Yu, J. N. Liu, J. Wang, N. Yao, X. Y. Li, X. Chen, B. Q. Li, Q. Zhang, Angew. Chem. Int. Ed., 2022, 61, 2208042 |
72. | Y. Chen, S. He, Q. Rong, Mater. Today Chem., 2023, 33, 101726 |
73. | Y. Wang, J. Long, J. Hu, Z. Sun, L. Meng, J. Power Sources, 2020, 453, 227853 |
74. | J. Zhu, M. Yao, S. Huang, J. Tian, Z. Niu, Angew. Chem. Int. Ed., 2020, 59, 16480 |
75. | Z. Shang, H. Zhang, M. Qu, R. Wang, L. Wan, D. Lei, Z. Li, Chem. Eng. J., 2023, 468, 143836 |
76. | H. Lu, J. Hu, L. Wang, J. Li, X. Ma, Z. Zhu, H. Li, Y. Zhao, Y. Li, J. Zhao, B. Xu, Adv. Funct. Mater., 2022, 32, 2112540 |
77. | Q. Bai, Q. Meng, W. Liu, W. Lin, P. Yi, J. Tang, G. Zhang, P. Cao, J. Yang, J. Mater. Chem. A, 2024, 12, 277 |
78. | Y. Wang, Y. Chen, Electrochim. Acta, 2021, 395, 139178 |
79. | G. Ji, R. Hu, Y. Wang, J. Zheng, J. Energy Storage, 2022, 46, 103858 |
80. | J. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang, T. Zhou, S. Zhang, L. Zhang, Q. Lu, C. Zhang, Z. Guo, ACS Nano, 2023, 17, 1610 |
81. | S. Yang, K. Xue, H. Liao, Y. Guo, L. Zhou, Y. Zhang, J. Energy Chem., 2023, 79, 495 |
82. | Y. Xiang, H. Pan, Y. Jiang, S. Xie, M. Xu, X. Zhang, Nano Energy, 2023, 117, 108873 |
83. | Y. Quan, M. Yang, M. Chen, W. Zhou, X. Han, J. Chen, B. Liu, S. Shi, P. Zhang, Chem. Eng. J., 2023, 458, 141392 |
84. | Z. J. Chen, T. Y. Shen, X. Xiao, X. C. He, Y. L. Luo, Z. Jin, C. H. Li, Adv. Mater., 2024, 36, 2413268 |
85. | Z. J. Chen, T. Y. Shen, M. H. Zhang, X. Xiao, H. Q. Wang, Q. R. Lu, Y. L. Luo, Z. Jin, C. H. Li, Adv. Funct. Mater., 2024, 34, 2314864 |
86. | G. Yang, J. Huang, X. Wan, B. Liu, Y. Zhu, J. Wang, O. Fontaine, S. Luo, P. Hiralal, Y. Guo, H. Zhou, EcoMat, 2022, 4, e12165 |
87. | M. Shi, T. Sun, W. Zhang, Q. Nian, Q. Sun, M. Cheng, J. Liang, Z. Tao, Angew. Chem. Int. Ed., 2024, 63, 2407659 |
88. | N. Chang, T. Li, R. Li, S. Wang, Y. Yin, H. Zhang, X. Li, Energy Environ. Sci., 2020, 13, 3527 |
89. | F. Bu, Y. Gao, W. Zhao, Q. Cao, Y. Deng, J. Chen, J. Pu, J. Yang, Y. Wang, N. Yang, T. Meng, X. Liu, C. Guan, Angew. Chem. Int. Ed., 2024, 63, e202318496 |
90. | H. Du, X. Qi, L. Qie, Y. Huang, Adv. Funct. Mater., 2023, 33, 2302546 |
91. | D. Wang, H. Peng, S. Zhang, H. Liu, N. Wang, J. Yang, Angew. Chem. Int. Ed., 2023, 62, 2315834 |
92. | J. Hao, L. Yuan, Y. Zhu, X. Bai, C. Ye, Y. Jiao, S. Z. Qiao, Angew. Chem. Int. Ed., 2023, 62, 2310284 |
93. | T.-Y. Chen, T.-J. Lin, B. Vedhanarayanan, H.-H. Shen, T.-W. Lin, J. Colloid Interface Sci., 2023, 629, 166 |
94. | X. Lin, G. Zhou, M. J. Robson, J. Yu, S. C. T. Kwok, F. Ciucci, Adv. Funct. Mater., 2021, 32, 2109322 |
95. | P. Xiong, Y. Kang, N. Yao, X. Chen, H. Mao, W.-S. Jang, D. M. Halat, Z.-H. Fu, M.-H. Jung, H. Y. Jeong, Y.-M. Kim, J. A. Reimer, Q. Zhang, H. S. Park, ACS Energy Lett., 2023, 8, 1613 |
96. | Z. Chen, X. Li, D. Wang, Q. Yang, L. Ma, Z. Huang, G. Liang, A. Chen, Y. Guo, B. Dong, X. Huang, C. Yang, C. Zhi, Energy Environ. Sci., 2021, 14, 3492 |
97. | C. Li, W. Wang, X. Sun, H. Hou, C. Zheng, J. Zhang, F. Hou, D. Zhang, J. Du, Y. Yao, J. Mater. Chem. A, 2022, 10, 24708 |
98. | P. Chen, W. Zhou, Z. Xiao, S. Li, Z. Wang, Y. Wang, S. Xie, Nano Energy, 2020, 74, 104905 |
99. | D. Yuan, X. Li, H. Yao, Y. Li, X. Zhu, J. Zhao, H. Zhang, Y. Zhang, E. T. J. Jie, Y. Cai, M. Srinivasan, Adv. Sci., 2023, 10, 2206469 |
100. | W. Wu, Y. Chu, T. Zhang, T. He, J. Hao, Small, 2023, 20, 2305463 |
101. | Y. Li, Y. Yang, X. Liu, Y. Yang, Y. Wu, L. Han, Q. Han, Colloids Surf. A: Physicochem. Eng. Aspects, 2022, 648, 129254 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Voltage profiles of Zn||Zn batteries with different electrolytes cycling at 100 °C[60]. b Schematic diagrams of the Zn2+ solvation shell and electrochemistry behaviors at the Zn/electrolyte interface in a hybrid hydrated eutectic system[27]. c Schematic illustration of the ternary electrolyte design for high-performance ZIBs[26]. d Zn||AC ZHC in Zn-HEE/3H2O of CV curves at low scanning rates[29]. e The plating/stripping performance of Zn||Zn batteries with BBAS and LE at 1 mA cm−2 under 50 °C[62]. f Schematic illustration of the synthesis of the PNMT hydrogel electrolyte by a facile radical polymerization method[63].
a The schematic of the structure evolutions of water and electrolyte, and the design of low-Tt solution[25]. b Hofmeister sequence and “super hydrous solvated” structure[87]. c Cycling performance and CE of Zn||PANI cells using BE and LACA at −40 °C[91].