Citation: | Nita Dragoe. Entropy Driven Synthesis of New Materials. Materials Lab 2022, 1, 220001. doi: 10.54227/mlab.20220001 |
The use of entropy in obtaining new materials has been known for some years for alloys but recent developments were made for a variety of ceramics. An outstanding compositional space is thus open by statistical distribution of components in a given structure. In this Perspective the author provides a description of entropy stabilized compounds and outlines directions for applications.
1. | B. S. Murty, J. W. Yeh, and S. Ranganathan, High Entropy Alloys , Elsevier, 2014 |
2. | D. B. Miracle, JOM, 2017, 69, 2130 |
3. | W. Sun, S. T. Dacek, S. P. Ong, G. Hautier, A. Jain, W. D. Richards, A. C. Gamst, K. A. Persson, and G. Ceder, Sci. Adv., 2016, 2, e1600225 |
4. | J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mat., 2004, 6, 299 |
5. | B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Mat. Sci. Eng.: A, 2004, 375−377, 213 |
6. | W. Steurer, Mat. Charact., 2020, 162, 110179 |
7. | D. B. Miracle and O. N. Senkov, Acta Mat., 2017, 122, 448 |
8. | A. Sarkar, B. Breitung, and H. Hahn, Scripta Mat, 2020, 187, 43 |
9. | P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinšek, Phys. Rev. Lett., 2014, 113, 107001 |
10. | Z. Li, K. G. Pradeep, Y. Deng, D. Raabe, and C. C. Tasan, Nature, 2016, 534, 227 |
11. | C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, and J.-P. Maria, Nat. Commun., 2015, 6, 8485 |
12. | N. Dragoe and D. Bérardan, Science, 2019, 366, 573 |
13. | M. D. Hossain, T. Borman, C. Oses, M. Esters, C. Toher, L. Feng, A. Kumar, W. G. Fahrenholtz, S. Curtarolo, D. Brenner, J. M. LeBeau, and J. Maria, Adv. Mat., 2021, 33, 2102904 |
14. | I. Bruno, S. Gražulis, J. R. Helliwell, S. N. Kabekkodu, B. McMahon, and J. Westbrook, Data Sci. J., 2017, 16, 38 |
15. | F. Tietz and C. Fronia, ChemPhysChem, 2020, 21, 2096 |
16. | B. L. Musicó, D. Gilbert, T. Z. Ward, K. Page, E. George, J. Yan, D. Mandrus, and V. Keppens, APL Mat., 2020, 8, 040912 |
17. | V. A. Kostyuchenko, E. X. Y. Lim, S. Zhang, G. Fibriansah, T.-S. Ng, J. S. G. Ooi, J. Shi, S.-M. Lok. Nature, 2016, 533, 425 |
18. | T.-Y. Chen, S.-Y. Wang, C.-H. Kuo, M.-H. Lin, C.-H. Li, H. T. Chen, C.- C. Wang, Y.-F. Liao, C.-C Lin, Y.-M. Chang, J.-W. Yeh, S.-J. Lin, T.-Y. Chen and H.-Y. Chen, J. Mater. Chem. A, 2020, 8, 21756 |
19. | Q. Wang, A. Sarkar, D. Wang, L. Velasco, R. Azmi, S. S. Bhattacharya, T. Bergfeldt, A. Düvel, P. Heitjans, T. Brezesinski, H. Hahn, and B. Breitung, En & Env. Sci., 2019, 12, 2433 |
20. | A. Sarkar, Q. Wang, A. Schiele, M. R. Chellali, S. S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, and B. Breitung, Adv. Mat., 2019, 31, 1970189 |
21. | C. Zhao, F. Ding, Y. Lu, L. Chen, and Y.-S. Hu, Angew. Chem. Int. Ed. Engl., 2020, 59, 264 |
22. | A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, and B. Breitung, Nat. Commun., 2018, 9, 3400 |
23. | J. Liu, K. Ren, C. Ma, H. Du, and Y. Wang, Ceram. Int., 2020, 46, 20576 |
24. | D. Bérardan, S. Franger, D. Dragoe, A. K. Meena, and N. Dragoe, Phys. Stat. Sol. RRL, 2016, 10, 328 |
25. | J. Zhang, J. Yan, S. Calder, Q. Zheng, M. A. McGuire, D. L. Abernathy, Y. Ren, S. H. Lapidus, K. Page, H. Zheng, J. W. Freeland, J. D. Budai, and R. P. Hermann, Chem. Mater., 2019, 31, 3705 |
26. | M. P. Jimenez-Segura, T. Takayama, D. Bérardan, A. Hoser, M. Reehuis, H. Takagi, and N. Dragoe, Appl. Phys. Lett., 2019, 114, 122401 |
27. | A. R. Mazza, E. Skoropata, J. Lapano, J. Zhang, Y. Sharma, B. L. Musico, V. Keppens, Z. Gai, M. J. Brahlek, A. Moreo, D. A. Gilbert, E. Dagotto, and T. Z. Ward, Phys. Rev. B, 2021, 104, 094204 |
28. | Y. Dong, K. Ren, Y. Lu, Q. Wang, J. Liu, and Y. Wang, J. Eur. Ceram. Soc., 2019, 39, 2574 |
29. | R.-Z. Zhang, F. Gucci, H. Zhu, K. Chen and M. J. Reece, Inorg. Chem., 2018, 57, 13027 |
30. | B. Jiang, Y. Yu, H. Chen, J. Cui, X. Liu, L. Xie, and J. He, Nat. Commun., 2021, 12, 1 |
31. | S. Zhai, J. Rojas, N. Ahlborg, K. Lim, M. F. Toney, H. Jin, W. C. Chueh, and A. Majumdar, Energy & Env. Sci., 2018, 11, 2172 |
32. | D. Feng, Y. Dong, L. Zhang, X. Ge, W. Zhang, S. Dai, and Z.-A. Qiao, Angew. Chem. Int. Ed. Engl., 2020, 59, 19503 |
33. | T. A. A. Batchelor, J. K. Pedersen, S. H. Winther, I. E. Castelli, K. W. Jacobsen, and J. Rossmeisl, Joule, 2019, 3, 834 |
34. | J. Pedersen, T. Batchelor, A. Bagger, and J. Rossmeisl, ACS Catalysis, 2020, 10, 2169 |
35. | P. Xie, Y. Yao, Z. Huang, Z. Liu, J. Zhang, T. Li, G. Wang, R. Shahbazian-Yassar, L. Hu, and C. Wang, Nat. Commun., 2019, 10, 4011 |
36. | S. Nellaiappan, N. Kumar, R. Kumar, A. Parui, K. D. Malviya, K. G. Pradeep, A. K. Singh, S. Sharma, C. S. Tiwary, and K. Biswas, Materials Today Energy, 2020, 16, 100393 |
37. | D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota, and H. Kitagawa, J. Am. Chem. Soc., 2020, 142, 13833 |
38. | C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger, and M. Grätzel, En. & Env. Sci., 2016, 9, 656 |
39. | C. Oses, C. Toher, and S. Curtarolo, Nat. Rev. Mat., 2020, 5, 295 |
40. | E. P. George, D. Raabe, and R. O. Ritchie, Nat. Rev. Mat., 2019, 4, 515 |
41. | A. J. Wright and J. Luo, J. Mat. Sci., 2020, 55, 9812 |
42. | P. B. Meisenheimer and J. T. Heron, MRS Advances, 2020, 5, 3419 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Distinction between “high entropy” and “entropy stabilized”. systems
Evolution of a five-component oxide and entropy driven synthesis.