Citation: | Zihang Liu, Weihong Gao, Fengkai Guo, Wei Cai, Qian Zhang, et al. Challenges for Thermoelectric Power Generation: From a Material Perspective. Materials Lab 2022, 1, 220003. doi: 10.54227/mlab.20220003 |
Thermoelectric devices enable the direct conversion of heat flux into electrical energy, which have attracted considerable research interests for energy harvesting to address the challenges of energy sustainability. Owing to the emerging concepts or strategies, the dimensionless thermoelectric figure of merit (
1. | L. E. Bell, Science, 2008, 321, 1457 |
2. | J. Mao, G. Chen and Z. Ren, Nat. Mater., 2020, 20, 454 |
3. | J.-P. Fleurial, Jom, 2009, 61, 79 |
4. | B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc and R. A. Segalman, Nat. Rev. Mater., 2016, 1, 16050 |
5. | N. Toshima, Synthetic Metals, 2017, 225, 3 |
6. | N. Nandihalli, C.-J. Liu and T. Mori, Nano Energy, 2020, 78, 105186 |
7. | I. Petsagkourakis, K. Tybrandt, X. Crispin, I. Ohkubo, N. Satoh and T. Mori, Science and Technology of Advanced Materials, 2018, 19, 836 |
8. | Y. Du, J. Xu, B. Paul and P. Eklund, Applied Materials Today, 2018, 12, 366 |
9. | R. Tian, C. Wan, N. Hayashi, T. Aoai and K. Koumoto, MRS Bull., 2018, 43, 193 |
10. | D. M. Rowe, CRC handbook of thermoelectrics, CRC press, New York, 1995 |
11. | H. Goldsmid, A. Sheard and D. Wright, Br. J. Appl. Phys., 1958, 9, 365 |
12. | A. F. Ioffe, Semiconductor thermoelements, and Thermoelectric cooling, Infosearch, ltd. , 1957 |
13. | T. Irie, T. Takahama and T. Ono, Jpn. J. Appl. Phys., 1963, 2, 72 |
14. | F. Rosi, J. Dismukes and E. Hockings, Electrical Engineering, 1960, 79, 450 |
15. | M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial and P. Gogna, Adv. Mater., 2007, 19, 1043 |
16. | B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen and Z. F. Ren, Science, 2008, 320, 634 |
17. | Y. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder, Nature, 2011, 473, 66 |
18. | S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder and S. W. Kim, Science, 2015, 348, 109 |
19. | K. Biswas, J. Q. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature, 2012, 489, 414 |
20. | T. Caillat, J.-P. Fleurial and A. Borshchevsky, J. Phys. Chem. Solids, 1997, 58, 1119 |
21. | S. R. Brown, S. M. Kauzlarich, F. Gascoin and G. J. Snyder, Chem. Mater., 2006, 18, 1873 |
22. | X. Shi, J. Yang, J. R. Salvador, M. F. Chi, J. Y. Cho, H. Wang, S. Q. Bai, J. H. Yang, W. Q. Zhang and L. D. Chen, J. Am. Chem. Soc., 2011, 133, 7837 |
23. | H. L. Liu, X. Shi, F. F. Xu, L. L. Zhang, W. Q. Zhang, L. D. Chen, Q. Li, C. Uher, T. Day and G. J. Snyder, Nat. Mater., 2012, 11, 422 |
24. | H. Z. Zhao, J. H. Sui, Z. J. Tang, Y. C. Lan, Q. Jie, D. Kraemer, K. McEnaney, A. Guloy, G. Chen and Z. F. Ren, Nano Energy, 2014, 7, 97 |
25. | H. J. Wu, L.-D. Zhao, F. S. Zheng, D. Wu, Y. L. Pei, X. Tong, M. G. Kanatzidis and J. Q. He, Nat. Commun., 2014, 5, 4515 |
26. | L.-D. Zhao, G. J. Tan, S. Q. Hao, J. Q. He, Y. L. Pei, H. Chi, H. Wang, S. K. Gong, H. B. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton and M. G. Kanatzidis, Science, 2016, 351, 141 |
27. | H. Tamaki, H. K. Sato and T. Kanno, Adv. Mater., 2016, 28, 10182 |
28. | J. Shuai, H. Y. Geng, Y. C. Lan, Z. Zhu, C. Wang, Z. H. Liu, J. M. Bao, C.-W. Chu, J. H. Sui and Z. F. Ren, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, E4125 |
29. | K. P. Zhao, P. F. Qiu, Q. F. Song, A. B. Blichfeld, E. Eikeland, D. Ren, B. H. Ge, B. B. Iversen, X. Shi and L. D. Chen, Mater. Today. Phys., 2017, 1, 14 |
30. | A. U. Khan, K. Kobayashi, D.-M. Tang, Y. Yamauchi, K. Hasegawa, M. Mitome, Y. M. Xue, B. Z. Jiang, K. Tsuchiya, D. Golberg, Y. Bando and T. Mori, Nano Energy, 2017, 31, 152 |
31. | J. Li, X. Y. Zhang, Z. W. Chen, S. Q. Lin, W. Li, J. H. Shen, I. T. Witting, A. Faghaninia, Y. Chen, A. Jain, L. D. Chen, G. J. Snyder and Y. Z. Pei, Joule, 2018, 2, 976 |
32. | L. You, Y. Liu, X. Li, P. Nan, B. Ge, Y. Jiang, P. Luo, S. Pan, Y. Pei, W. Zhang, G. J. Snyder, J. Yang, J. Zhang and J. Luo, Energy Environ. Sci., 2018, 11, 1848 |
33. | J. Mao, H. T. Zhu, Z. W. Ding, Z. H. Liu, G. A. Gamage, G. Chen and Z. F. Ren, Science, 2019, 365, 495 |
34. | H. T. Zhu, J. Mao, Y. W. Li, J. F. Sun, Y. M. Wang, Q. Zhu, G. N. Li, Q. C. Song, J. W. Zhou, Y. H. Fu, R. He, T. Tong, Z. H. Liu, W. Y. Ren, L. You, Z. M. Wang, J. Luo, A. Sotnikov, J. M. Bao, K. Nielsch, G. Chen, D. J. Singh and Z. F. Ren, Nat. Commun., 2019, 10, 270 |
35. | Y. Wu, Z. Chen, P. Nan, F. Xiong, S. Lin, X. Zhang, Y. Chen, L. Chen, B. Ge and Y. Pei, Joule, 2019, 3, 1276 |
36. | Z. H. Liu, N. Sato, W. H. Gao, K. Yubuta, N. Kawamoto, M. Mitome, K. Kurashima, Y. Owada, K. Nagase, C.-H. Lee, J. Yi, K. Tsuchiya and T. Mori, Joule, 2021, 5, 1196 |
37. | G. J. Snyder and E. S. Toberer, Nat. Mater., 2008, 7, 105 |
38. | Y. Z. Pei, H. Wang and G. J. Snyder, Adv. Mater., 2012, 24, 6125 |
39. | A. M. Dehkordi, M. Zebarjadi, J. He and T. M. Tritt, Materials Science & Engineering:R:Reports, 2015, 97, 1 |
40. | T. J. Zhu, Y. T. Liu, C. G. Fu, J. P. Heremans, J. G. Snyder and X. B. Zhao, Adv. Mater., 2017, 29, 1605884 |
41. | Z. H. Liu, J. Mao, T.-H. Liu, G. Chen and Z. F. Ren, MRS Bull., 2018, 43, 181 |
42. | T. Mori, Small, 2017, 13, 1702013 |
43. | C. Chang and L.-D. Zhao, Mater. Today. Phys., 2018, 4, 50 |
44. | M. D. Nielsen, V. Ozolins and J. P. Heremans, Energy Environ. Sci., 2013, 6, 570 |
45. | J. He and T. M. Tritt, Science, 2017, 357, eaak9997 |
46. | J. Mao, Z. H. Liu and Z. F. Ren, npj Quantum Mater., 2016, 1, 16028 |
47. | M. G. Kanatzidis, Chem. Mater., 2010, 22, 648 |
48. | W. S. Liu, X. Yan, G. Chen and Z. F. Ren, Nano Energy, 2012, 1, 42 |
49. | X. L. Su, P. Wei, H. Li, W. Liu, Y. G. Yan, P. Li, C. Q. Su, C. J. Xie, W. Y. Zhao, P. C. Zhai, Q. J. Zhang, X. F. Tang and C. Uher, Adv. Mater., 2017, 29, 1602013 |
50. | J. Li, Y. Pan, C. Wu, F. Sun and T. Wei, Science China Technological Sciences, 2017, 60, 1347 |
51. | B. B. Iversen, J. Mater. Chem., 2010, 20, 10778 |
52. | K. Koumoto, Y. Wang, R. Zhang, A. Kosuga and R. Funahashi, Annu. Rev. Mater. Res., 2010, 40, 363 |
53. | L. D. Zhao, J. He, D. Berardan, Y. Lin, J. F. Li, C. W. Nan and N. Dragoe, Energy Environ. Sci., 2014, 7, 2900 |
54. | J.-A. Dolyniuk, B. Owens-Baird, J. Wang, J. V. Zaikina and K. Kovnir, Mater. Sci. Eng. R-Rep., 2016, 108, 1 |
55. | Z. H. Liu, J. Mao, J. H. Sui and Z. F. Ren, Energy Environ. Sci., 2018, 11, 23 |
56. | J. Zhang, L. Song and B. B. Iversen, npj Comput. Mater., 2019, 5, 76 |
57. | J. Shuai, J. Mao, S. W. Song, Q. Y. Zhang, G. Chen and Z. F. Ren, Mater. Today. Phys., 2017, 1, 74 |
58. | T. Fang, X. Li, C. Hu, Q. Zhang, J. Yang, W. Zhang, X. Zhao, D. J. Singh and T. Zhu, Adv. Funct. Mater., 2019, 29, 1900677 |
59. | K. Zhao, P. Qiu, X. Shi and L. Chen, Adv. Funct. Mater., 2019, n/a, 1903867 |
60. | L.-D. Zhao, C. Chang, G. J. Tan and M. G. Kanatzidis, Energy Environ. Sci., 2016, 9, 3044 |
61. | B. Cai, H. Hu, H.-L. Zhuang and J.-F. Li, J. Alloys Compd., 2019, 806, 471 |
62. | Z.-H. Ge, L.-D. Zhao, D. Wu, X. Liu, B.-P. Zhang, J.-F. Li and J. He, Mater. Today, 2016, 19, 227 |
63. | T. J. Zhu, C. G. Fu, H. H. Xie, Y. T. Liu and X. B. Zhao, Adv. Energy Mater., 2015, 5, 1500588 |
64. | G. Rogl and P. Rogl, Current Opinion in Green and Sustainable Chemistry, 2017, 4, 50 |
65. | M. Hong, J. Zou and Z.-G. Chen, Adv. Mater., 2019, 31, 1807071 |
66. | Z.-G. Chen, X. Shi, L.-D. Zhao and J. Zou, Prog. Mater. Sci., 2018, 97, 283 |
67. | Q. Zhang, Y. Sun, W. Xu and D. Zhu, Adv. Mater., 2014, 26, 6829 |
68. | H. Jin, J. Li, J. Iocozzia, X. Zeng, P. C. Wei, C. Yang, N. Li, Z. Liu, J. H. He and T. Zhu, Angew. Chem. Int. Ed., 2019, 58, 15206 |
69. | Q. H. Zhang, X. Y. Huang, S. Q. Bai, X. Shi, C. Uher and L. D. Chen, Adv. Eng. Mater., 2016, 18, 194 |
70. | R. He, G. Schierning and K. Nielsch, Advanced Materials Technologies, 2018, 3, 1700256 |
71. | D. Champier, Energy Conversion and Management, 2017, 140, 167 |
72. | X. Shi, L. Chen and C. Uher, Int. Mat. Rev, 2016, 61, 379 |
73. | G. J. Tan, L. D. Zhao and M. G. Kanatzidis, Chem. Rev., 2016, 116, 12123 |
74. | J. Mao, Z. H. Liu, J. W. Zhou, H. T. Zhu, Q. Zhang, G. Chen and Z. F. Ren, Advances in Physics, 2018, 67, 69 |
75. | X.-L. Shi, J. Zou and Z.-G. Chen, Chem. Rev., 2020, 120, 7399 |
76. | D. Kraemer, J. H. Sui, K. McEnaney, H. Z. Zhao, Q. Jie, Z. F. Ren and G. Chen, Energy Environ. Sci., 2015, 8, 1299 |
77. | Q. Zhu, S. W. Song, H. T. Zhu and Z. F. Ren, Journal of Power Sources, 2019, 414, 393 |
78. | H. T. Zhu, R. He, J. Mao, Q. Zhu, C. H. Li, J. F. Sun, W. Y. Ren, Y. M. Wang, Z. H. Liu, Z. J. Tang, A. Sotnikov, Z. M. Wang, D. Broido, D. J. Singh, G. Chen, K. Nielsch and Z. F. Ren, Nat. Commun., 2018, 9, 2497 |
79. | A. Muto, D. Kraemer, Q. Hao, Z. Ren and G. Chen, Rev. Sci. Instrum., 2009, 80, 093901 |
80. | H. T. Zhu, J. Mao, Z. Z. Feng, J. F. Sun, Q. Zhu, Z. H. Liu, D. J. Singh, Y. M. Wang and Z. F. Ren, Science Advances, 2019, 5, eaav5813 |
81. | A. Muto, J. Yang, B. Poudel, Z. F. Ren and G. Chen, Adv. Energy Mater., 2013, 3, 245 |
82. | Z. Liang, C. Xu, H. Shang, Q. Zhu, F. Ding, J. Mao and Z. Ren, Mater. Today. Phys., 2021, 19, 100413 |
83. | C. G. Fu, S. Q. Bai, Y. T. Liu, Y. S. Tang, L. D. Chen, X. B. Zhao and T. J. Zhu, Nat. Commun., 2015, 6, 8144 |
84. | Y. Xing, R. Liu, J. Liao, Q. Zhang, X. Xia, C. Wang, H. Huang, J. Chu, M. Gu, T. Zhu, C. Zhu, F. Xu, D. Yao, Y. Zeng, S. Bai, C. Uher and L. D. Chen, Energy Environ. Sci., 2019, 12, 3390 |
85. | P. A. Zong, R. Hanus, M. Dylla, Y. S. Tang, J. C. Liao, Q. H. Zhang, G. J. Snyder and L. D. Chen, Energy Environ. Sci., 2017, 10, 183 |
86. | F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing, H.-S. Chu, Q. Zhang, P. Lu, T. Zhang, D. Ren, J. Chen, X. Shi and L. Chen, Energy Environ. Sci., 2016, 9, 3120 |
87. | B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu and J. He, Energy Environ. Sci., 2020, 13, 2106 |
88. | B. Qin, D. Wang, X. Liu, Y. Qin, J.-F. Dong, J. Luo, J.-W. Li, W. Liu, G. Tan, X. Tang, J.-F. Li, J. He and L.-D. Zhao, Science, 2021, 373, 556 |
89. | Z. Bu, X. Zhang, Y. Hu, Z. Chen, S. Lin, W. Li and Y. Pei, Energy Environ. Sci., 2021, 14, 6506 |
90. | Q. H. Zhang, J. C. Liao, Y. S. Tang, M. Gu, C. Ming, P. F. Qiu, S. Q. Bai, X. Shi, C. Uher and L. D. Chen, Energy Environ. Sci., 2017, 10, 956 |
91. | X. Hu, P. Jood, M. Ohta, M. Kunii, K. Nagase, H. Nishiate, M. G. Kanatzidis and A. Yamamoto, Energy Environ. Sci., 2016, 9, 517 |
92. | P. Ying, R. He, J. Mao, Q. Zhang, H. Reith, J. Sui, Z. F. Ren, K. Nielsch and G. Schierning, Nat. Commun., 2021, 12, 1121 |
93. | B. Jiang, Y. Yu, H. Chen, J. Cui, X. Liu, L. Xie and J. He, Nat. Commun., 2021, 12, 3234 |
94. | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J. Pennycook and J. He, Science, 2021, 371, 830 |
95. | A. Walsh and A. Zunger, Nat. Mater., 2017, 16, 964 |
96. | P. Gorai, V. Stevanović and E. S. Toberer, Nat. Rev. Mater., 2017, 2, 17053 |
97. | C. B. Vining, Nat. Mater., 2009, 8, 83 |
98. | Y. Pei, A. D. LaLonde, H. Wang and G. J. Snyder, Energy Environ. Sci., 2012, 5, 7963 |
99. | Y. Qin, Y. Xiao and L.-D. Zhao, APL Materials, 2020, 8, 010901 |
100. | L.-D. Zhao, S. Wang and Y. Xiao, Acta Metall. Sin., 2021, 57, 1171 |
101. | C. Gayner and Y. Amouyal, Adv. Funct. Mater., 2020, 30, 1901789 |
102. | H. Wang, Y. Pei, A. D. LaLonde and G. J. Snyder, in Thermoelectric Nanomaterials, Springer, 2013, pp. 3 |
103. | J. Portal, L. Eaves, S. Askenazy and R. Stradling, Solid State Commun., 1974, 14, 1241 |
104. | M. Prunnila, P. Kivinen, A. Savin, P. Törmä and J. Ahopelto, Phys. Rev. Lett., 2005, 95, 206602 |
105. | J. Park, M. Dylla, Y. Xia, M. Wood, G. J. Snyder and A. Jain, Nat. Commun., 2021, 12, 3425 |
106. | E. Witkoske, X. Wang, M. Lundstrom, V. Askarpour and J. Maassen, J. Appl. Phys., 2017, 122, 175102 |
107. | M. Bachmann, M. Czerner and C. Heiliger, Phys. Rev. B, 2012, 86, 115320 |
108. | Y. Xiao, H. J. Wu, W. Li, M. J. Yin, Y. L. Pei, Y. Zhang, L. W. Fu, Y. X. Chen, S. J. Pennycook, L. Huang, J. Q. He and L.-D. Zhao, J. Am. Chem. Soc., 2017, 139, 18732 |
109. | L. You, J. Zhang, S. Pan, Y. Jiang, K. Wang, J. Yang, Y. Pei, Q. Zhu, M. T. Agne, G. J. Snyder, Z. Ren, W. Zhang and J. Luo, Energy Environ. Sci., 2019, 12, 3089 |
110. | X. Qian, H. Wu, D. Wang, Y. Zhang, J. Wang, G. Wang, L. Zheng, S. J. Pennycook and L.-D. Zhao, Energy Environ. Sci., 2019, 12, 1969 |
111. | S. R. Brown, E. S. Toberer, T. Ikeda, C. A. Cox, F. Gascoin, S. M. Kauzlarich and G. J. Snyder, Chem. Mater., 2008, 20, 3412 |
112. | J.-B. Vaney, S. A. Yamini, H. Takaki, K. Kobayashi, N. Kobayashi and T. Mori, Mater. Today. Phys., 2019, 9, 100090 |
113. | F. Ahmed, N. Tsujii and T. Mori, J. Mater. Chem. A, 2017, 5, 7545 |
114. | Y. Zheng, T. Lu, M. M. Polash, M. Rasoulianboroujeni, N. Liu, M. E. Manley, Y. Deng, P. Sun, X. Chen and R. P. Hermann, Science advances, 2019, 5, eaat9461 |
115. | W. Y. Zhao, Z. Liu, Z. Sun, Q. J. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. L. Su, X. F. Tang, B. Shen, X. Dong, J. H. Yang, Y. Liu and J. Shi, Nature, 2017, 549, 247 |
116. | W. Y. Zhao, Z. Y. Liu, P. Wei, Q. J. Zhang, W. T. Zhu, X. L. Su, X. F. Tang, J. H. Yang, Y. Liu, J. Shi, Y. M. Chao, S. Q. Lin and Y. Z. Pei, Nat. Nanotechnol., 2017, 12, 55 |
117. | W. Y. Zhao, Z. Y. Liu, P. Wei, Q. J. Zhang, W. T. Zhu, X. L. Su, X. F. Tang, J. H. Yang, Y. Liu, J. Shi, Y. M. Chao, S. Q. Lin and Y. Z. Pei, Nat. Nanotechnol., 2017, 12, 55 |
118. | D. He, X. Mu, H. Zhou, C. Li, S. Ma, P. Ji, W. Hou, P. Wei, W. Zhu and X. Nie, J. Electron. Mater., 2018, 47, 3338 |
119. | S. Ma, C. Li, L. Xing, X. Mu, W. Zhu, X. Nie, X. Sang, P. Wei, Q. Zhang and W. Zhao, J. Electron. Mater., 2020, 49, 2881 |
120. | H. S. Kim, W. S. Liu, G. Chen, C.-W. Chu and Z. F. Ren, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 8205 |
121. | D. Narducci, Appl. Phys. Lett., 2011, 99, 102104 |
122. | W. S. Liu, H. S. Kim, Q. Jie and Z. F. Ren, Scr. Mater., 2016, 111, 3 |
123. | W. Li, Y. X. Wu, S. Q. Lin, Z. W. Chen, J. Li, X. Y. Zhang, L. L. Zheng and Y. Z. Pei, ACS Energy Letters, 2017, 2, 2349 |
124. | W. S. Liu, Q. Jie, H. S. Kim and Z. F. Ren, Acta Mater., 2015, 87, 357 |
125. | Z. H. Liu, W. H. Gao, X. F. Meng, X. B. Li, J. Mao, Y. M. Wang, J. Shuai, W. Cai, Z. F. Ren and J. H. Sui, Scr. Mater., 2017, 127, 72 |
126. | Y. Gelbstein, G. Gotesman, Y. Lishzinker, Z. Dashevsky and M. Dariel, Scr. Mater., 2008, 58, 251 |
127. | Y. Zheng, Q. Zhang, X. L. Su, H. Y. Xie, S. C. Shu, T. L. Chen, G. J. Tan, Y. G. Yan, X. F. Tang and C. Uher, Adv. Energy Mater., 2015, 5, 1401391 |
128. | G. Rogl and P. Rogl, Sci. Adv. Mater., 2011, 3, 517 |
129. | G. Rogl, A. Grytsiv, M. Gürth, A. Tavassoli, C. Ebner, A. Wünschek, S. Puchegger, V. Soprunyuk, W. Schranz and E. Bauer, Acta Mater., 2016, 107, 178 |
130. | M. Al Malki, Q. Qiu, T. Zhu, G. Snyder and D. Dunand, Mater. Today. Phys., 2019, 9, 100134 |
131. | G. Li, Q. An, B. Duan, L. Borgsmiller, M. A. Malki, M. Agne, U. Aydemir, P. Zhai, Q. Zhang, S. I. Morozov, W. A. Goddard and G. J. Snyder, Mater. Sci. Eng. R-Rep., 2021, 144, 100607 |
132. | W. H. Gao, X. Y. Yi, B. Cui, Z. Y. Wang, J. Huang, J. H. Sui and Z. H. Liu, J. Mater. Chem. C, 2018, 6, 9821 |
133. | S. Perumal, S. Roychowdhury, D. S. Negi, R. Datta and K. Biswas, Chem. Mater., 2015, 27, 7171 |
134. | G. Li, K. Gadelrab, T. Souier, P. L. Potapov, G. Chen and M. Chiesa, Nanotechnology, 2012, 23, 065703 |
135. | Z. J. Xu, L. P. Hu, P. J. Ying, X. B. Zhao and T. J. Zhu, Acta Mater., 2015, 84, 385 |
136. | M. Kretova, E. Avilov and M. Korzhuev, Russian Metallurgy (Metally), 2020, 2020, 387 |
137. | D. Qin, H. Wu, S. Cai, J. Zhu, B. Cui, L. Yin, H. Qin, W. Shi, Y. Zhang, Q. Zhang, W. Liu, J. Cao, S. J. Pennycook, W. Cai and J. Sui, Adv. Energy Mater., 2019, 9, 1902435 |
138. | H. Qin, S. Sun, Y. Liu, L. Yin, Y. Zhang, Y. Sun, L. Xie, D. Qin, M. Guo, F. Guo, W. Qu, Z. H. Liu, Q. Zhang, W. Cai, H. Wu and J. Sui, Nano Energy, 2021, 90, 106530 |
139. | G. Rogl, Z. Aabdin, E. Schafler, J. Horky, D. Setman, M. Zehetbauer, M. Kriegisch, O. Eibl, A. Grytsiv, E. Bauer, M. Reinecker, W. Schranz and P. Rogl, J. Alloys Compd., 2012, 537, 183 |
140. | J. Davidow and Y. Gelbstein, J. Electron. Mater., 2013, 42, 1542 |
141. | G. Rogl and P. Rogl, Mater. Today. Phys., 2017, 3, 48 |
142. | R. He, S. Gahlawat, C. Guo, S. Chen, T. Dahal, H. Zhang, W. Liu, Q. Zhang, E. Chere and K. White, Phys. Status Solidi (a), 2015, 212, 2191 |
143. | P. Qiu, M. T. Agne, Y. Liu, Y. Zhu, H. Chen, T. Mao, J. Yang, W. Zhang, S. M. Haile, W. G. Zeier, J. Janek, C. Uher, X. Shi, L. Chen and G. J. Snyder, Nat. Commun., 2018, 9, 2910 |
144. | L. R. Jørgensen, J. Zhang, C. B. Zeuthen and B. B. Iversen, J. Mater. Chem. A, 2018, 6, 17171 |
145. | H. Shang, Z. Liang, C. Xu, S. Song, D. Huang, H. Gu, J. Mao, Z. Ren and F. Ding, Acta Mater., 2020, 201, 572 |
146. | F. Li, T.-R. Wei, F. Kang and J.-F. Li, J. Alloys Compd., 2014, 614, 394 |
147. | C. Barreteau, D. Berardan and N. Dragoe, J. Solid State Chem., 2015, 222, 53 |
148. | J. Li, L.-D. Zhao, J. Sui, D. Berardan, W. Cai and N. Dragoe, Dalton Trans., 2015, 44, 2285 |
149. | S. Aminorroaya Yamini, M. Brewis, J. Byrnes, R. Santos, A. Manettas and Y. Z. Pei, J. Mater. Chem. C, 2015, 3, 10610 |
150. | S. LeBlanc, S. K. Yee, M. L. Scullin, C. Dames and K. E. Goodson, Renewable and Sustainable Energy Reviews, 2014, 32, 313 |
151. | S. K. Yee, S. LeBlanc, K. E. Goodson and C. Dames, Energy Environ. Sci., 2013, 6, 2561 |
152. | X. Shi, S. Q. Bai, L. L. Xi, J. Yang, W. Q. Zhang, L. D. Chen and J. H. Yang, J. Mater. Res., 2011, 26, 1745 |
153. | S. Chen and Z. F. Ren, Mater. Today, 2013, 16, 387 |
154. | Y. Xiao and L.-D. Zhao, Science, 2020, 367, 1196 |
155. | Q. Guo, A. Assoud and H. Kleinke, Adv. Energy Mater., 2014, 4, 1400348 |
156. | J. Yan, P. Gorai, B. Ortiz, S. Miller, S. A. Barnett, T. Mason, V. Stevanović and E. S. Toberer, Energy Environ. Sci., 2015, 8, 983 |
157. | J. F. Sun, J. Shuai, Z. F. Ren and D. J. Singh, Mater. Today. Phys., 2017, 2, 40 |
158. | L. Xi, S. Pan, X. Li, Y. Xu, J. Ni, X. Sun, J. Yang, J. Luo, J. Xi, W. Zhu, X. Li, D. Jiang, R. Dronskowski, X. Shi, G. J. Snyder and W. Zhang, J. Am. Chem. Soc., 2018, 140, 10785 |
159. | S. Bhattacharya, R. Chmielowski, G. Dennler and G. K. Madsen, J. Mater. Chem. A, 2016, 4, 11086 |
160. | J. Yang, H. M. Li, T. Wu, W. Q. Zhang, L. D. Chen and J. H. Yang, Adv. Funct. Mater., 2008, 18, 2880 |
161. | R. Gautier, X. W. Zhang, L. H. Hu, L. P. Yu, Y. Y. Lin, T. O. Sunde, D. Chon, K. R. Poeppelmeier and A. Zunger, Nature chemistry, 2015, 7, 308 |
162. | M. K. Jana and K. Biswas, ACS Energy Letters, 2018, 3, 1315 |
163. | Z. H. Liu, W. H. Zhang, W. H. Gao and T. Mori, Energy Environ. Sci., 2021, 14, 3579 |
164. | J. F. Li, W. S. Liu, L. D. Zhao and M. Zhou, NPG Asia Mater., 2010, 2, 152 |
165. | Z. H. Liu, H. Y. Geng, J. Shuai, Z. Y. Wang, J. Mao, D. Z. Wang, Q. Jie, W. Cai, J. H. Sui and Z. F. Ren, J. Mater. Chem. C, 2015, 3, 10442 |
166. | Z. H. Liu, J. F. Sun, J. Mao, H. T. Zhu, W. Y. Ren, J. C. Zhou, Z. M. Wang, D. J. Singh, J. H. Sui, C.-W. Chu and Z. F. Ren, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 5332 |
167. | C. Chen, W. Xue, S. Li, Z. Zhang, X. Li, X. Wang, Y. Liu, J. Sui, X. Liu and F. Cao, Proc. Natl. Acad. Sci. U. S. A., 2019, 116, 2831 |
168. | W. j. Xie, J. He, H. J. Kang, X. f. Tang, S. Zhu, M. Laver, S. Y. Wang, J. R. Copley, C. M. Brown and Q. J. Zhang, Nano Lett., 2010, 10, 3283 |
169. | R. G. Deng, X. L. Su, Z. Zheng, W. Liu, Y. G. Yan, Q. J. Zhang, V. P. Dravid, C. Uher, M. G. Kanatzidis and X. F. Tang, Science advances, 2018, 4, eaar5606 |
170. | X. F. Meng, Z. H. Liu, B. Cui, D. D. Qin, H. Y. Geng, W. Cai, L. W. Fu, J. Q. He, Z. F. Ren and J. H. Sui, Adv. Energy Mater., 2017, 7, 1602582 |
171. | X. L. Su, F. Fu, Y. G. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. W. Yang, H. Chi, X. F. Tang, Q. J. Zhang and C. Uher, Nat. Commun., 2014, 5, 4908 |
172. | G. Zheng, X. L. Su, H. Y. Xie, Y. J. Shu, T. Liang, X. Y. She, W. Liu, Y. G. Yan, Q. J. Zhang, C. Uher, M. Kanatzidis and X. F. Tang, Energy Environ. Sci., 2017, 10, 2638 |
173. | D. Yang, X. Su, Y. Yan, T. Hu, H. Xie, J. He, C. Uher, M. G. Kanatzidis and X. Tang, Chem. Mater., 2016, 28, 4628 |
174. | Y. Cao, T. Zhu and X. Zhao, J. Alloys Compd., 2008, 449, 109 |
175. | R. J. Mehta, Y. Zhang, C. Karthik, B. Singh, R. W. Siegel, T. Borca-Tasciuc and G. Ramanath, Nat. Mater., 2012, 11, 233 |
176. | C. Zhou, Z. Shi, B. Ge, K. Wang, D. Zhang, G. Liu and G. Qiao, J. Mater. Chem. A, 2017, 5, 2876 |
177. | S. Ortega, M. Ibáñez, Y. Liu, Y. Zhang, M. V. Kovalenko, D. Cadavid and A. Cabot, Chemical Society Reviews, 2017, 46, 3510 |
178. | B. L. Liao and G. Chen, MRS Bull., 2015, 40, 746 |
179. | G. Zheng, X. Su, X. Li, T. Liang, H. Xie, X. She, Y. Yan, C. Uher, M. G. Kanatzidis and X. Tang, Adv. Energy Mater., 2016, 6, 1600595 |
180. | C. Xu, Z. Liang, H. Shang, D. Wang, H. Wang, F. Ding, J. Mao and Z. Ren, Mater. Today. Phys., 2021, 17, 100336 |
181. | H. Wang, W. D. Porter, H. Böttner, J. König, L. Chen, S. Bai, T. M. Tritt, A. Mayolet, J. Senawiratne and C. Smith, J. Electron. Mater., 2013, 42, 654 |
182. | H. Wang, W. D. Porter, H. Böttner, J. König, L. Chen, S. Bai, T. M. Tritt, A. Mayolet, J. Senawiratne and C. Smith, J. Electron. Mater., 2013, 42, 1073 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Timeline of thermoelectric theory development.
The measured conversion efficiency η of current state-of-the-art thermoelectric devices as a function of working temperature difference ΔT, including single legs,[76-79] unicouples,[80-82] modules,[36,83-89] and segmented devices.[90-94] Here single leg, unicouple, module, and segmented device mean only n or p-type material, one-pair n and p-type material, two or more elements of n and p-type material, and two or more different n and p-type materials packing in parallel, respectively.
(a) Schematic diagram of the defect formation energies in the semiconductor by first-principles calculations;[96](b) the effect of Mg stoichiometry in Mg3+xSb1.5Bi0.49Te0.01 on the measured Seebeck coefficient.[27]
Schematic diagrams of the ineffectiveness of several strategies in thermoelectrics: (a) the interband or intervalley scattering in band convergence; (b) strong carrier scattering in energy filtering; (c) phonon and electron co-scattering by microstructural engineering; (d) electrons with the same direction spins in the magnetic semiconductor.
(a) and (b) The relationship between total thermal conductivity κtot and power factor PF at room temperature for advanced n-type and p-type thermoelectric systems, respectively, where the bubble color represents the highest calculated Z (×10−3 K−1).[72-75]
Hardness vs. elastic modulus of typical thermoelectric materials in comparison to polymers, metals and ceramics. [129]
(a) Comparison of XRD patterns for Mg3.2Sb0.49Bi1.5Te0.01 after in situ measure- ments of its electronic thermoelectric properties at 773 K.[145] (b) thermogravimetric analysis of BaCu2Se2 powder and densified pellet (inset) under the Ar atmosphere.[148] (c) comparison of the measured power factor at 773 K by the long-term in situ measurements for Mg3.2Sb1.5Bi0.49Te0.01 (without and with the boron nitride coating).[145]
High-throughput materials design framework for the discovery of promising thermoelectric materials.
The schematic diagram of microstructural instability of nanostructured materials at high working temperature.
The relationship between reliability and validity for experiment results.