Citation: | Chao Li, Yi Wu, Yi-Xin Zhang, Jun Guo, Jing Feng, et al. Bi2S3 as a Promising Thermoelectric Material: Back and Forth. Materials Lab 2022, 1, 220014. doi: 10.54227/mlab.20220014 |
Thermoelectric conversion technology based on thermoelectric materials can directly convert heat and electricity and is extensively used in waste heat recovery, semiconductor refrigeration, and space exploration. Currently, bismuth telluride (Bi2Te3) thermoelectric materials are the best in terms of room-temperature performance and have been commercialized. Compared with commercial Bi2Te3 thermoelectric materials of the same family (III-VI group), bismuth sulfide (Bi2S3) thermoelectric materials have the unique advantages of being abundant, low-cost, and environmentally friendly. However, the thermoelectric properties of Bi2S3 are limited by its low electrical conductivity. In recent years, with the development of preparation methods and characterization tools, many studies have emerged to improve the thermoelectric properties of Bi2S3 materials. Herein, the preparation of Bi2S3 thermoelectric materials and the implications of the process on their thermoelectric properties are summarized. The advances made in composition, structure and other strategies to optimize the thermoelectric properties of Bi2S3 are highlighted, and the current challenges for the development of Bi2S3 thermoelectric materials and potential future research directions are also discussed.
1. | D. Cahen, Mater. Today, 2008, 11, 64 |
2. | E. Shove, Build. Res. Inf., 2018, 46, 779 |
3. | L. Yang, Z.-G. Chen, M. S. Dargusch and J. Zou, Adv. Energy Mater., 2018, 8, 1701797 |
4. | B. Kozinsky and D. J. Singh, Annu. Rev. Mater. Sci., 2021, 51, 565 |
5. | G. Tan, L.-D. Zhao and M. G. Kanatzidis, Chem. Rev., 2016, 116, 12123 |
6. | Q. Yan and M. G. Kanatzidis, Nat. Mater., 2021 |
7. | X. Zhou, Y. Yan, X. Lu, H. Zhu, X. Han, G. Chen and Z. Ren, Mater. Today, 2018, 21, 974 |
8. | Q. Zhu, S. Wang, X. Wang, A. Suwardi, M. H. Chua, X. Y. D. Soo and J. Xu, Nano-Micro Letters, 2021, 13, 119 |
9. | K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature, 2012, 489, 414 |
10. | G. D. Mahan, APL Mater., 2016, 4, 104806 |
11. | J. Mao, Z. Liu, J. Zhou, H. Zhu, Q. Zhang, G. Chen and Z. Ren, Adv. Phys., 2018, 67, 69 |
12. | P. Qiu, X. Shi and L. Chen, Energy Stor. Mater., 2016, 3, 85 |
13. | J.-F. Li, W.-S. Liu, L.-D. Zhao and M. Zhou, NPG Asia Mater., 2010, 2, 152 |
14. | M. Dutta, T. Ghosh and K. Biswas, APL Mater., 2020, 8, 040910 |
15. | M. V. Vedernikov and E. K. Iordanishvili, presented at ICT98, Nagoya, Japan (May, 1998). |
16. | H. Cheng, X. He, Z. Fan and J. Ouyang, Adv. Energy Mater., 2019, 9, 1901085 |
17. | D. M. Rowe, CRC Handbook of Thermoelectrics, CRC press LLC, United States of America, 1995. |
18. | C. Gayner and K. K. Kar, Prog. Mater. Sci., 2016, 83, 330 |
19. | J. L. Blackburn, A. J. Ferguson, C. Cho and J. C. Grunlan, Adv. Mater., 2018, 30, 1704386 |
20. | V. Kozii, B. Skinner and L. Fu, Phys. Rev. B, 2019, 99, 155123 |
21. | A. Sakai, S. Minami, T. Koretsune, T. Chen, T. Higo, Y. Wang, T. Nomoto, M. Hirayama, S. Miwa, D. Nishio-Hamane, F. Ishii, R. Arita and S. Nakatsuji, Nature, 2020, 581, 53 |
22. | K.-i. Uchida, W. Zhou and Y. Sakuraba, Appl. Phys. Lett., 2021, 118, 140504 |
23. | J. Xiang, S. Hu, M. Lyu, W. Zhu, C. Ma, Z. Chen, F. Steglich, G. Chen and P. Sun, Sci. China Phys. Mech., 2019, 63, 237011 |
24. | Z. Chen, Z. Jian, W. Li, Y. Chang, B. Ge, R. Hanus, J. Yang, Y. Chen, M. Huang, G. J. Snyder and Y. Pei, Adv. Mater., 2017, 29, 1606768 |
25. | Z.-Z. Luo, S. Cai, S. Hao, T. P. Bailey, Y. Luo, W. Luo, Y. Yu, C. Uher, C. Wolverton, V. P. Dravid, Z. Zou, Q. Yan and M. G. Kanatzidis, Energy Environ. Sci., 2022, 15, 368 |
26. | Y.-K. Zhu, P. Wu, J. Guo, Y. Zhou, X. Chong, Z.-H. Ge and J. Feng, Ceram. Int., 2020, 46, 14994 |
27. | C. Li, S.-H. Li, Y.-X. Zhang, J. Feng and Z.-H. Ge, J. Eur. Ceram. Soc., 2022, 42, 485 |
28. | Z.-H. Ge, L.-D. Zhao, D. Wu, X. Liu, B.-P. Zhang, J.-F. Li and J. He, Mater. Today, 2016, 19, 227 |
29. | Dedi, P.-C. Lee, P.-C. Wei and Y.-Y. Chen, Nanomaterials, 2021, 11, 819 |
30. | R. Guehne, G. V. M. Williams, S. V. Chong and J. Haase, J. Phys. Chem. C, 2021, 125, 6743 |
31. | J. Guo, Y.-X. Zhang, Z.-Y. Wang, F. Zheng, Z.-H. Ge, J. Fu and J. Feng, Nano Energy, 2020, 78, 105227 |
32. | M. P. Deshpande, P. N. Sakariya, S. V. Bhatt, N. Garg, K. Patel and S. H. Chaki, Materials Science in Semiconductor Processing, 2014, 21, 180 |
33. | Z. Kebbab, N. Benramdane, M. Medles, A. Bouzidi and H. Tabet-Derraz, Sol. Energy Mater. Sol. Cells, 2002, 71, 449 |
34. | L.-L. Long, J.-J. Chen, X. Zhang, A.-Y. Zhang, Y.-X. Huang, Q. Rong and H.-Q. Yu, NPG Asia Mater., 2016, 8, e263 |
35. | W. Luo, F. Li, Q. Li, X. Wang, W. Yang, L. Zhou and L. Mai, ACS Appl. Mater. Interfaces, 2018, 10, 7201 |
36. | J. Ni, Y. Zhao, T. Liu, H. Zheng, L. Gao, C. Yan and L. Li, Adv. Energy Mater., 2014, 4, 1400798 |
37. | Y. Zhao, T. Liu, H. Xia, L. Zhang, J. Jiang, M. Shen, J. Ni and L. Gao, J. Mater. Chem. A, 2014, 2, 13854 |
38. | B. Zhang, X. Ye, W. Hou, Y. Zhao and Y. Xie, J. Phys. Chem. B, 2006, 110, 8978 |
39. | Y. Jin, C. Tang, J. Tian and B. Shao, Bioconjug. Chem., 2021, 32, 161 |
40. | S. Yang, Y. Zhang, S. Lu, L. Liu, L. Yang, Y. Guo, S. Yu and H. Yang, Colloids Surf. B, 2020, 196, 111291 |
41. | Y. Zhao, Y. Tao, Q. Huang, J. Huang, J. Kuang, R. Gu, P. Zeng, H.-Y. Li, H. Liang and H. Liu, Chemosensors, 2022, 10, 48 |
42. | Z. Li, K. Ai, Z. Yang, T. Zhang, J. Liu and X. Cui, RSC Adv., 2017, 7, 29672 |
43. | L. F. Lundegaard, E. Makovicky, T. Boffa-Ballaran and T. Balic-Zunic, Phys. Chem. Miner., 2005, 32, 578 |
44. | H. T. Shaban, M. M. Nassary and M. S. El-Sadek, Physica B Condens. Matter, 2008, 403, 1655 |
45. | Z. H. Ge, B. P. Zhang, P. P. Shang and J. F. Li, J. Mater. Chem., 2011, 21, 9194 |
46. | J. Guo, J. Yang, Z.-H. Ge, B. Jiang, Y. Qiu, Y.-K. Zhu, X. Wang, J. Rong, X. Yu, J. Feng and J. He, Adv. Funct. Mater., 2021, 31, 2102838 |
47. | R. Chmielowski, D. Pere, C. Bera, I. Opahle, W. J. Xie, S. Jacob, F. Capet, P. Roussel, A. Weidenkaff, G. K. H. Madsen and G. Dennler, J. Appl. Phys., 2015, 117, 125103 |
48. | C. Li, J. Zhao, Q. Hu, Z. Liu, Z. Yu and H. Yan, J. Alloys Compd., 2016, 688, 329 |
49. | J. Pei, L. J. Zhang, B. P. Zhang, P. P. Shang and Y. C. Liu, J. Mater. Chem. C, 2017, 5, 12492 |
50. | W. Ji, X.-L. Shi, W.-D. Liu, H. Yuan, K. Zheng, B. Wan, W. Shen, Z. Zhang, C. Fang, Q. Wang, L. Chen, Y. Zhang, X. Jia and Z.-G. Chen, Nano Energy, 2021, 87, 106171 |
51. | B. Chen, C. Uher, L. Iordanidis and M. G. Kanatzidis, Chem. Mater., 1997, 9, 1655 |
52. | R. Chmielowski, D. Péré, C. Bera, I. Opahle, W. Xie, S. Jacob, F. Capet, P. Roussel, A. Weidenkaff, G. K. H. Madsen and G. Dennler, J. Appl. Phys., 2015, 117, 125103 |
53. | N. Mahuli, D. Saha and S. K. Sarkar, J. Phys. Chem. C, 2017, 121, 8136 |
54. | D. S. Sanditov and V. N. Belomestnykh, Technical Physics, 2011, 56, 1619 |
55. | H. Koc, H. Ozisik, E. Deligöz, A. M. Mamedov and E. Ozbay, J. Mol. Model., 2014, 20, 2180 |
56. | X. Liu, D. Wang, H. Wu, J. Wang, Y. Zhang, G. Wang, S. J. Pennycook and L.-D. Zhao, Adv. Funct. Mater., 2019, 29, 1806558 |
57. | L.-D. Zhao, J. He, D. Berardan, Y. Lin, J.-F. Li, C.-W. Nan and N. Dragoe, Energy Environ. Sci., 2014, 7, 2900 |
58. | Y. Xiao, C. Chang, Y. L. Pei, D. Wu, K. L. Peng, X. Y. Zhou, S. K. Gong, J. Q. He, Y. S. Zhang, Z. Zeng and L. D. Zhao, Phys. Rev. B, 2016, 94, 125203 |
59. | X. Gao, M. Zhou, Y. Cheng and G. F. Ji, Philos. Mag., 2016, 96, 208 |
60. | Y. L. Pei, C. Chang, Z. Wang, M. J. Yin, M. H. Wu, G. J. Tan, H. J. Wu, Y. X. Chen, L. Zheng, S. K. Gong, T. J. Zhu, X. B. Zhao, L. Huang, J. Q. He, M. G. Kanatzidis and L. D. Zhao, J. Am. Chem. Soc., 2016, 138, 16364 |
61. | Y. Chen, D. Y. Wang, Y. L. Zhou, Q. T. Pang, J. W. Shao, G. T. Wang, J. F. Wang and L. D. Zhao, Front. Phys., 2019, 14, 13601 |
62. | E. Rathore, R. Juneja, S. P. Culver, N. Minafra, A. K. Singh, W. G. Zeier and K. Biswas, Chem. Mater., 2019, 31, 2106 |
63. | J. Yang, J. Yan, G. Liu, Z. Shi and G. Qiao, J. Eur. Ceram. Soc., 2019, 39, 1214 |
64. | W. Liu, C. F. Guo, M. Yao, Y. Lan, H. Zhang, Q. Zhang, S. Chen, C. P. Opeil and Z. Ren, Nano Energy, 2014, 4, 113 |
65. | R. Fortulan, S. Aminorroaya Yamini, C. Nwanebu, S. Li, T. Baba, M. J. Reece and T. Mori, ACS Appl. Energy Mater., 2022, 5, 3845 |
66. | Z.-H. Ge, B.-P. Zhang, Z.-X. Yu and J.-F. Li, J. Mater. Res., 2011, 26, 2711 |
67. | J. Pei, L.-J. Zhang, B.-P. Zhang, P.-P. Shang and Y.-C. Liu, J. Mater. Chem. C, 2017, 5, 12492 |
68. | Y.-X. Zhang, Z.-H. Ge and J. Feng, J. Alloys Compd., 2017, 727, 1076 |
69. | Z.-Y. Wang, J. Guo, J. Feng and Z.-H. Ge, J. Solid State. Chem., 2021, 297, 122043 |
70. | A. Melnikov, Met. Powder Rep., 2016, 71, 279 |
71. | S. M. de la Parra-Arciniega, N. A. Garcia-Gomez, L. L. Garza-Tovar, D. I. García-Gutiérrez and E. M. Sánchez, Ultrason. Sonochem., 2017, 36, 95 |
72. | F. Chen, Y. Cao and D. Jia, J. Colloid Interface Sci., 2013, 404, 110 |
73. | M. Ranjbar and M. A. Taher, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2016, 46, 1801 |
74. | J. Wu, F. Qin, G. Cheng, H. Li, J. Zhang, Y. Xie, H.-J. Yang, Z. Lu, X. Yu and R. Chen, J. Alloys Compd., 2011, 509, 2116 |
75. | J. Guo, L. Chen, Y. Wu, J. Xu, D.-H. Lu, J. Feng and Z.-H. Ge, Chem. Comm., 2020, 56, 11839 |
76. | Tarachand, V. Sharma, R. Bhatt, V. Ganesan and G. S, Okram, Nano Res., 2016, 9, 3291 |
77. | J. Guo, Z.-H. Ge, F. Qian, D.-H. Lu and J. Feng, J. Mater. Sci., 2020, 55, 263 |
78. | J. Yang, L. Yu, T. Wang, J. Yan, G. Liu, Z. Shi and G. Qiao, J. Alloys Compd., 2019, 780, 35 |
79. | X. Du, R. Shi, Y. Guo, Y. Wang, Y. Ma and Z. Yuan, Dalton Trans., 2017, 46, 2129 |
80. | Z. H. Ge, B. P. Zhang, Z. X. Yu, Y. Liu and J. F. Li, Acta Physica Sinica, 2012, 61, 048401 |
81. | M. C. Barma, B. D. Long, M. F. M. Sabri, S. Ramesh, R. Saidur, S. M. Said, K. Kimura, N. H. Hai, T. D. Huy and T. B. Trung, Powder Technol., 2016, 294, 348 |
82. | K. Biswas, L.-D. Zhao and M. G. Kanatzidis, Adv. Energy Mater., 2012, 2, 634 |
83. | X. Qu, Z. Gao, M. Liu, H. zhai, L. Shi, Y. Li and H. Song, Appl. Surf. Sci., 2020, 501, 144047 |
84. | Q. Yang, C. Hu, S. Wang, Y. Xi and K. Zhang, J. Phys. Chem. C, 2013, 117, 5515 |
85. | Z.-H. Ge, P. Qin, D. He, X. Chong, D. Feng, Y.-H. Ji, J. Feng and J. He, ACS Appl. Mater. Interfaces, 2017, 9, 4828 |
86. | H. Zhang, Y. J. Ji, X. Y. Ma, J. Xu and D. R. Yang, Nanotechnology, 2003, 14, 974 |
87. | T. Huang, Y. Li, X. Wu, K. Lv, Q. Li, M. Li, D. Du and H. Ye, Chinese J. Catal., 2018, 39, 718 |
88. | H. Chen, T. Huang, S. Zheng, T. Fang and L. Wang, Mater. Lett., 2016, 185, 67 |
89. | S. Sharma, H. H. Singh, S. Kumar and N. Khare, Nanotechnology, 2021, 32, 335705 |
90. | R. S. Lokhande, S. R. Thakur and P. A. Chate, Optik, 2020, 219, 165230 |
91. | S. A. Patil, Y.-T. Hwang, V. V. Jadhav, K. H. Kim and H.-S. Kim, J. Photochem. Photobiol. A, 2017, 332, 174 |
92. | H. Kim, J.-e. Park, K. Kim, M.-K. Han, S.-J. Kim and W. Lee, Chinese J. Chem., 2013, 31, 752 |
93. | J. Arumugam, A. D. Raj, A. A. Irudayaraj and M. Thambidurai, Mater. Lett., 2018, 220, 28 |
94. | Z.-H. Ge, B.-P. Zhang, Z.-X. Yu and B.-B. Jiang, CrystEngComm, 2012, 14, 2283 |
95. | Z. H. Ge and G. S. Nolas, Cryst, Growth Des., 2014, 14, 533 |
96. | Z. H. Ge, P. Qin, D. S. He, X. Y. Chong, D. Feng, Y. H. Ji, J. Feng and J. Q. He, ACS Appl. Mater. Interfaces, 2017, 9, 4828 |
97. | A. A. Rahman, R. Huang and L. Whittaker-Brooks, Chem. Mater., 2016, 28, 6544 |
98. | J. Wu, F. Qin, F. Y. F. Chan, G. Cheng, H. Li, Z. Lu and R. Chen, Mater. Lett., 2010, 64, 287 |
99. | D. C. Onwudiwe, J. Nano Res., 2019, 58, 80 |
100. | S. Ahmadi Atouei, A. A. Ranjbar andA. Rezania, Appl. Energy, 2017, 208, 332 |
101. | J. Shi, M. Qin, W. Aftab and R. Zou, Energy Stor. Mater., 2021, 41, 321 |
102. | Z. H. Ge, B. P. Zhang, Y. X. Chen, Z. X. Yu, Y. Liu and J. F. Li, Chem. Comm., 2011, 47, 12697 |
103. | H. Bai, X. Su, D. Yang, Q. Zhang, G. Tan, C. Uher, X. Tang and J. Wu, Adv. Funct. Mater., 2021, 31, 2100431 |
104. | J. Guo, Z. Y. Wang, Y. K. Zhu, L. Chen, J. Feng and Z. H. Ge, Rare Metals, 2022, 41, 931 |
105. | Y. X. Zhang, Z. H. Ge and J. Feng, J. Alloys Compd., 2017, 727, 1076 |
106. | W. Liu, K. C. Lukas, K. McEnaney, S. Lee, Q. Zhang, C. P. Opeil, G. Chen and Z. Ren, Energy Environ. Sci., 2013, 6, 552 |
107. | W. Zhao, J. Ding, Y. Zou, C.-a. Di and D. Zhu, Chem. Soc. Rev., 2020, 49, 7210 |
108. | Y. Huang, C. Chen, W. Zhang, X. Li, W. Xue, X. Wang, Y. Liu, H. Yao, Z. Zhang, Y. Chen, F. Cao, X. Liu, Y. Wang and Q. Zhang, Sci. China Mater., 2021, 64, 2541 |
109. | B. Wang, Y. Wang, S. Zheng, S. Liu, J. Li, S. Chang, T. An, W. Sun and Y. Chen, J. Alloys Compd., 2019, 806, 676 |
110. | S. Hiroi, S. Nishino, S. Choi, O. Seo, J. Kim, Y. Chen, C. Song, A. Tayal, O. Sakata and T. Takeuchi, J. Appl. Phys., 2019, 125, 225101 |
111. | C.-C. Lin, R. Lydia, J. H. Yun, H. S. Lee and J. S. Rhyee, Chem. Mater., 2017, 29, 5344 |
112. | J. L. Lensch-Falk, J. D. Sugar, M. A. Hekmaty and D. L. Medlin, J. Alloys Compd., 2010, 504, 37 |
113. | Z. H. Ge, B. P. Zhang, Y. Liu and J. F. Li, Phys. Chem. Chem. Phys., 2012, 14, 4475 |
114. | Z.-H. Ge, B.-P. Zhang, Y.-Q. Yu and P.-P. Shang, J. Alloys Compd., 2012, 514, 205 |
115. | L.-J. Zhang, B.-P. Zhang, Z.-H. Ge, C.-G. Han, N. Chen and J.-F. Li, Intermetallics, 2013, 36, 96 |
116. | Y. Q. Yu, B. P. Zhang, Z. H. Ge, P. P. Shang and Y. X. Chen, Mater. Chem. Phys., 2011, 131, 216 |
117. | L. J. Zhang, B. P. Zhang, Z. H. Ge and C. G. Han, Solid State Commun., 2013, 162, 48 |
118. | M. K. Han, S. Kim, H. Y. Kim and S. J. Kim, RSC Adv., 2013, 3, 4673 |
119. | Z. Liu, Y. Pei, H. Geng, J. Zhou, X. Meng, W. Cai, W. Liu and J. Sui, Nano Energy, 2015, 13, 554 |
120. | X. Du, R. Shi, Y. Ma, F. Cai, X. Wang and Z. Yuan, RSC Adv., 2015, 5, 31004 |
121. | J. Yang, G. Liu, J. Yan, X. Zhang, Z. Shi and G. Qiao, Alloys Compd., 2017, 728, 351 |
122. | Y. Guo, X. Du, Y. Wang and Z. Yuan, J. Alloys Compd., 2017, 717, 177 |
123. | F. Fitriani, S. M. Said, S. Rozali, M. F. M. Salleh, M. F. M. Sabri, D. L. Bui, T. Nakayama, O. Raihan, M. M. I. Megat Hasnan, M. B. A. Bashir and F. Kamal, Electron. Mater. Lett., 2018, 14, 689 |
124. | Y. Chen, D. Wang, Y. Zhou, Q. Pang, J. Shao, G. Wang, J. Wang and L.-D. Zhao, Front. Phys., 2018, 14, 13601 |
125. | J. Yan, J. Yang, B. Ge, G. Liu, Z. Shi, Z. Duan and G. Qiao, J. Electron. Mater., 2019, 48, 503 |
126. | Y. Wu, Q. Lou, Y. Qiu, J. Guo, Z.-Y. Mei, X. Xu, J. Feng, J. He and Z.-H. Ge, Inorg. Chem. Front., 2019, 6, 1374 |
127. | J. Guo, Y.-K. Zhu, L. Chen, Z.-Y. Wang, Z.-H. Ge and J. Feng, J. Mater. Sci. Technol., 2022, 100, 51 |
128. | J. Guo, Z.-Y. Wang, Y.-K. Zhu, L. Chen, J. Feng and Z.-H. Ge, Rare Metals, 2022, 41, 931 |
129. | Z. Li, C. Xiao, H. Zhu and Y. Xie, J. Am. Chem. Soc., 2016, 138, 14810 |
130. | T. Zhu, L. Hu, X. Zhao and J. He, Adv. Sci., 2016, 3, 1600004 |
131. | Y. Yu, S. Zhang, A. M. Mio, B. Gault, A. Sheskin, C. Scheu, D. Raabe, F. Zu, M. Wuttig, Y. Amouyal and O. Cojocaru-Mirédin, ACS Appl. Mater. Interfaces, 2018, 10, 3609 |
132. | Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G. J. Snyder and Y. Pei, Nat. Commun., 2017, 8, 13828 |
133. | X. Meng, Z. Liu, B. Cui, D. Qin, H. Geng, W. Cai, L. Fu, J. He, Z. Ren and J. Sui, Adv. Energy Mater., 2017, 7, 1602582 |
134. | Y. Jian, Y. Junnan, L. Guiwu, S. Zhongqi and Q. Guanjun, J. Eur. Ceram. Soc., 2019, 39, 1214 |
135. | F. Zhang, D. Wu and J. He, Materials Lab, 2022, 1, 220012 |
136. | J. Zhang, T. Zhu, C. Zhang, Y. Yan, G. Tan, W. Liu, X. Su and X. Tang, J. Alloys Compd., 2021, 881, 160639 |
137. | H. Iwasaki, I. Kimura, T. Murakami and H. Kim, Physica B Condens. Matter, 2015, 472, 91 |
138. | D. P. Wong, W. L. Chien, C. Y. Huang, C. E. Chang, A. Ganguly, L. M. Lyu, J. S. Hwang, L. C. Chen and K. H. Chen, RSC Adv., 2016, 6, 98952 |
139. | A. Nozariasbmarz, B. Poudel, W. Li, H. B. Kang, H. Zhu and S. Priya, iScience, 2020, 23, 101340 |
140. | I. Malik, T. Srivastava, K. K. Surthi, C. Gayner and K. K. Kar, Mater. Chem. Phys., 2020, 255, 123598 |
141. | S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder and S. W. Kim, Science, 2015, 348, 109 |
142. | L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B, 1993, 47, 16631 |
143. | B. Qin and L.-D. Zhao, Materials Lab, 2022, 1, 220004 |
144. | J. Guo, Q. Lou, Y. Qiu, Z.-Y. Wang, Z.-H. Ge, J. Feng and J. He, Appl. Surf. Sci., 2020, 520, 146341 |
145. | B. Xu, T. Feng, M. T. Agne, Q. Tan, Z. Li, K. Imasato, L. Zhou, J.-H. Bahk, X. Ruan, G. J. Snyder and Y. Wu, Angew. Chem. Int. Ed., 2018, 57, 2413 |
146. | D. Li, X. Y. Qin, J. Zhang and H. J. Li, Physics Letters A, 2006, 348, 379 |
147. | Y. Zhong, J. Tang, H. Liu, Z. Chen, L. Lin, D. Ren, B. Liu and R. Ang, ACS Appl. Mater. Interfaces, 2020, 12, 49323 |
148. | S. Sarkar, X. Hua, S. Hao, X. Zhang, T. P. Bailey, T. J. Slade, P. Yasaei, R. J. Korkosz, G. Tan, C. Uher, V. P. Dravid, C. Wolverton and M. G. Kanatzidis, Chem. Mater., 2021, 33, 1842 |
149. | J. P. Heremans, B. Wiendlocha and A. M. Chamoire, Energy Environ. Sci., 2012, 5, 5510 |
150. | Z.-H. Ge, B.-P. Zhang and J.-F. Li, J. Mater. Chem., 2012, 22, 17589 |
151. | X. Li, L. L. Xi and J. Yang, J. Inorg. Mater., 2019, 34, 236 |
152. | Y. Iwasaki, R. Sawada, V. Stanev, M. Ishida, A. Kirihara, Y. Omori, H. Someya, I. Takeuchi, E. Saitoh and S. Yorozu, NPJ Comput. Mater., 2019, 5, 103 |
153. | Y. Iwasaki, I. Takeuchi, V. Stanev, A. G. Kusne, M. Ishida, A. Kirihara, K. Ihara, R. Sawada, K. Terashima, H. Someya, K.-i. Uchida, E. Saitoh and S. Yorozu, Sci. Rep., 2019, 9, 2751 |
154. | M. Hong, W. Lyu, Y. Wang, J. Zou and Z.-G. Chen, J. Am. Chem. Soc., 2020, 142, 2672 |
155. | G. Xing, J. Sun, Y. Li, X. Fan, W. Zheng and D. J. Singh, Phys. Rev. Mater., 2017, 1, 065405 |
156. | D. Nita, Materials Lab, 2022, 1, 220001 |
157. | C. Xiao, K. Li, J. Zhang, W. Tong, Y. Liu, Z. Li, P. Huang, B. Pan, H. Su and Y. Xie, Mater. Horizons, 2014, 1, 81 |
158. | L. Hu, Y. Zhang, H. Wu, J. Li, Y. Li, M. Mckenna, J. He, F. Liu, S. J. Pennycook and X. Zeng, Adv. Energy Mater., 2018, 8, 1802116 |
159. | M. Ruan, F. Li, Y. Chen, Z. Zheng and P. Fan, J. Alloys Compd., 2020, 849, 156677 |
160. | S.-J. Joo, B. Ryu, J.-H. Son, J. E. Lee, B.-K. Min and B.-S. Kim, J. Alloys Compd., 2019, 783, 448 |
161. | F. Li, M. Ruan, B. Jabar, C. Liang, Y. Chen, D. Ao, Z. Zheng, P. Fan and W. Liu, Nano Energy, 2021, 88, 106273 |
162. | B. Jabar, F. Li, Z. Zheng, A. Mansoor, Y. Zhu, C. Liang, D. Ao, Y. Chen, G. Liang, P. Fan and W. Liu, Nat. Commun., 2021, 12, 7192 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Diagram of a temperature differential power unit and a cooling unit.
(a) The abundance of various elements employed in thermoelectric materials. (b) The price of elements compared with that of 99.99% Te powder (200 mesh). (c) The LD50 values of elements normally employed in thermoelectric materials. [28]
The crystal structure of Bi2S3.
Calculated electronic band structure and projected density of states (DOS) for Bi2S3 without spin orbital coupling (SOC) considered. The vertical red lines refer to valence band maximum (VBM) and conduction band minimum (CBM). The black dashed line refers to Fermi level. [46]
Experimental measured
Sample morphology and XRD patterns of Bi2S3 prepared by solid-phase melting. Reproduced with permission.[82]
Sample morphology of Bi2S3 prepared by hydrothermal method.[94]
Preparation process of Bi@Bi2S3 core-shell nanostructures. [95]
(a) Phase diagram of the Bi2Te3–Bi2Se3–Bi2S3 system. (b) Hall carrier concentration, (c) weighted mobility, and (d) lattice thermal conductivity of the Bi2Te3–Bi2Se3–Bi2S3 system. [106]
Schematic diagram of interstitial atom, vacancy, replacement atom and Secondary phase.
Diagram of the thermoelectric properties of solution halogen-doped Bi2S3. [46]
Design and physical drawing of thermoelectric power generation device prepared by solution halogen-doped Bi2S3 and its performance characteristics. Reproduced with permission.[46] Copyright 2021, Wiley-VCH.
Optimization of the thermoelectric properties of Bi2S3 by PbBr2 doping and multiple nanoprecipitates. [31]
Mechanism (a), preparation method (b) and microstructure (c) of modulated doped Bi2S3. [144]
(a) (b) Schematic diagram and microstructure of highly textured bulk Bi2S3 prepared by sintering of (001) oriented Bi2S3 nanorods prepared by the hydrothermal method. [45, 94] (c) Bi2S3 nanocomposite sintered from Bi2S3@Bi core-shell nanowires prepared by the hydrothermal method. [85].
Design, preparation and characterization of electronic fast channels. [150]