Citation: | Yuting Fan, Gangjian Tan. Ferroelectric Engineering Advances Thermoelectric Materials. Materials Lab 2022, 1, 220008. doi: 10.54227/mlab.20220008 |
It is commonly believed that wide band gap ferroelectrics are electrically insulating and can hardly be promising thermoelectric materials. However, things could be different if their gaps are reduced while the ferroelectricity is well reserved. Here we propose that the exploration of narrow band gap semiconductors with ferroelectric characteristic might lead to simultaneous optimization of electrical and thermal transport properties for advanced thermoelectric materials. Narrow gap endows the materials with good dopability, which is a prerequisite for high electrical conductivity. In the meanwhile, ferroelectricity-induced Rashba band splitting and lattice softening would yield large Seebeck coefficient and low thermal conductivity, respectively. Altogether, excellent thermoelectric performance can be expected in the narrow gap ferroelectric semiconductors (NGFS). We also propose the design principles of potential NGFSs.
1. | J. Sun, Y. Zhang, Y. Fan, X. Tang, G. Tan, Chem. Eng. J., 2021, 431, 133699 |
2. | B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, Science, 2008, 320, 634 |
3. | Y. Fan, S. Xie, J. Sun, X. Tang, G. Tan, ACS Appl. Energ. Mater., 2021, 4, 6333 |
4. | Z. Liu, W. Gao, W. Zhang, N. Sato, Q. Guo, T. Mori, Advanced Energy Materials, 2020, 10, 2002588 |
5. | G. Xie, Z. Li, T. Luo, H. Bai, J. Sun, Y. Xiao, L.-D. Zhao, J. Wu, G. Tan, X. Tang, Nano Energy, 2020, 69, 104395 |
6. | B. Qin, L-D. Zhao, Mat. Lab, 2022, 1, 220004 |
7. | G. Tan, L.-D. Zhao, M. G. Kanatzidis, Chem. Rev., 2016, 116, 12123 |
8. | G. Chen, Phys. Rev. B, 1998, 57, 14958 |
9. | M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, P. Gogna, Adv. Mater., 2007, 19, 1043 |
10. | W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, C. Uher, Phys. Rev. Lett., 2012, 108, 166601 |
11. | J. P. Heremans, B. Wiendlocha, A. M. Chamoire, Energ. Environ. Sci., 2012, 5, 5510 |
12. | G. Tan, F. Shi, S. Hao, H. Chi, L.-D. Zhao, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc., 2015, 137, 5100 |
13. | H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Nat. Mater., 2012, 11, 422 |
14. | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, Science, 2021, 371, 830 |
15. | D. Nita, Mat. Lab, 2022, 1, 220001 |
16. | B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z. Ren, Nano Lett., 2012, 12, 2077 |
17. | W. Zhao, Z. Liu, P. Wei, Q. Zhang, W. Zhu, X. Su, X. Tang, J. Yang, Y. Liu, J. Shi, Nat. Nanotech., 2017, 12, 55 |
18. | L.-D. Zhao, J. He, D. Berardan, Y. Lin, J.-F. Li, C.-W. Nan, N. Dragoe, Energ. Environ. Sci., 2014, 7, 2900 |
19. | L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature, 2014, 508, 373 |
20. | I. Kudman, J. Mater. Sci., 1972, 7, 1027 |
21. | A. Majumdar, Science, 2004, 303, 777 |
22. | J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science, 2008, 321, 554 |
23. | Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Nature, 2011, 473, 66 |
24. | O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M.-H. Du, D. J. Singh, A. Podlesnyak, G. Ehlers, M. Lumsden, Nat. Commun., 2011, 10, 614 |
25. | X. Meng, S. Chen, H. Peng, H. Bai, S. Zhang, X. Su, G. Tan, G. Van Tendeloo, Z. Sun, Q. Zhang, X. Tang, J. Wu, Sci. China. Mater., 2022, 1 |
26. | Y. Xu, Ferroelectric materials and their applications, Elsevier, North Holland, 2013 |
27. | J. F. Scott, Science, 2007, 315, 954 |
28. | C. Bowen, H. Kim, P. Weaver, S. Dunn, Energ. Environ. Sci., 2014, 7, 25 |
29. | Đ. Dangić, A. R. Murphy, É. D. Murray, S. Fahy, I. Savić, Phys. Rev. B, 2018, 97, 224106 |
30. | Q. Tian, W. Zhang, Z. Qin, G. Qin, Nanoscale, 2021, 13, 18032 |
31. | J. He, T. M. Tritt, Science, 2017, 357, eaak9997 |
32. | O. Kvyatkovskii, Phys. Solid State, 1997, 39, 602 |
33. | D. Sarkar, T. Ghosh, S. Roychowdhury, R. Arora, S. Sajan, G. Sheet, U. V. Waghmare, K. Biswas, J. Am. Chem. Soc., 2020, 142, 12237 |
34. | A. Vasdev, M. Dutta, S. Mishra, V. Kaur, H. Kaur, K. Biswas, G. Sheet, Sci. Rep., 2021, 11, 17190 |
35. | T. Xing, C. Zhu, Q. Song, H. Huang, J. Xiao, D. Ren, M. Shi, P. Qiu, X. Shi, F. Xu, L. Chen, Adv. Mater., 2021, 33, 2008773 |
36. | X. Li, Y. Sheng, L. Wu, S. Hu, J. Yang, D. J. Singh, J. Yang, W. Zhang, npj Comput. Mater., 2020, 6, 107 |
37. | S. Singh, A. C. Garcia-Castro, I. Valencia-Jaime, F. Muñoz, A. H. Romero, Physical Review B, 2016, 94, 161116 |
38. | A. Banik, T. Ghosh, R. Arora, M. Dutta, J. Pandey, S. Acharya, A. Soni, U. V. Waghmare, K. Biswas, Energ. Environ. Sci., 2019, 12, 589 |
39. | M. Hong, W. Lyv, M. Li, S. Xu, Q. Sun, J. Zou, Z.-G. Chen, Joule, 2020, 4, 2030 |
40. | A. Narayan, Phys. Rev. B, 2015, 92, 220101 |
41. | J. W. Bennett, K. M. Rabe, J. Solid State Chem., 2012, 195, 21 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Strategies that boost the thermoelectric performance of hole-doped PbTe.[20-23]
Ferroelectricity leads to Rashba band splitting and lattice instability (phonons softening).
Simultaneous optimization of three key physical parameters (S, σ and κ) in narrow gap ferroelectric semiconductors and remarkably improved ZT values by ferroelectric engineering.