Citation: | Ruifeng Zhang, Tengfei Xu, Bonan Yao, Zhaorui Liu. Perspectives in the New Era of Materials Intelligent Design. Materials Lab 2022, 1, 220017. doi: 10.54227/mlab.20220017 |
The launching integrated computational materials engineering (ICME) and materials genome engineering (MGE) has led the transformation of empirical and theoretical design paradigm into the rational computational one that further provides the basis for the data-driven design paradigm by integrating the high-throughput techniques in experiments and computations, the big data science with general principles, the informatics with knowledge discovery based on data mining and machine learning, and ultimately enabling the possibility of materials intelligence design (MID) via artificial intelligence. In this perspective article, we highlight the intelligent solution to acquire the processing-structure-property-performance relationship of multilevel-structured materials by emphasizing modularization, automation, standardization, integration and intelligence, following the hierarchical relationship of data, information, knowledge and wisdom, which is essentially different from the past empirical, theoretical and computational paradigms. The new era of MID is expected to fundamentally reform the material innovation mode through an integrated infrastructure guided by novel concepts that is radically distinguished from the way of thinking and doing in the past, providing a perspective scientific vision and direction for future materials design.
1. | D. L. McDowell and G. B. Olson, Sci. Model. and Simul., 2008, 15, 207 |
2. | National Science and Technology Council Committee on Technology Subcommittee on the Materials Genome Initiative, Materials Genome Initiative Strategic Plan, USA, June 2014. |
3. | National Research Council, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security, The National Academies Press, USA, 2008. |
4. | R. Lesar, Introduction to Computational Materials Science: Fundamentals to Applications, Cambridge University Press, UK, 2013. |
5. | T. Hey, S. Tansley, and K. Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery, Microsoft Research Press, USA, 2009. |
6. | S. R. Kalidindi, Int. Mater. Rev., 2015, 60, 150 |
7. | A. Agrawal and A. Choudhary, APL Mater., 2016, 4, 053208 |
8. | G. Ceder and K. Persson, Sci. Am., 2013, 309, 36 |
9. | H. Wang, X. D. Xiang and L. T. Zhang, Sci. Technol. Rev., 2018, 36, 15 |
10. | A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholla, D. Gunter, D. Skinner, G. Ceder and K. A. Persson, APL Mater., 2013, 1, 011002 |
11. | S. Curtarolo, W. Setyawan, G. L. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy and M. J. Mehl, Comput. Mater. Sci., 2012, 58, 218 |
12. | Z. R. Liu, B. N. Yao, R. F. Zhang, Comput. Mater. Sci., |
13. | S. Kirklin, J. E. Saal, B. Meredig, A. Tompson, J. W. Doak, M. Aykol, S. Ruhl and C. Wolverton, npj Comput. Mater., 2015, 1, 1 |
14. | A. Zakutayev, N. Wunder, M. Schwarting, J. D. Perkins, R. White, K. Munch, W. Tumas and C. Phillips, Sci. Data, 2018, 5, 1 |
15. | L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler, Phys. Rev. Lett., 2015, 114, 105503 |
16. | D. J. Livingstone, Artificial neural networks: Methods and Applications, Humana Press, USA, 2008. |
17. | J. Behler, Chem. Rev., 2021, 121, 10037 |
18. | G. L. W. Hart, T. Mueller, C. Toher, and S. Curtarolo, Nat. Rev. Mater., 2021, 6, 730 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The unified research and design strategy of future material design, which brings a new era of MID by integrating the high-throughput techniques, data science, informatics with knowledge discovery and the artificial intelligence to acquire the processing-structure-property-performance (PSPP) relationship.[5-7]