Citation: | Huan Yang, Zhijia Zhang, Zhenyang Yu, Mengmeng Zhang, Yifang Zhang, et al. Research Progress of Spin-Dependent Effects in Catalysis and Energy Storage. Materials Lab 2022, 1, 220016. doi: 10.54227/mlab.20220016 |
Hydrogen fuel is highly valued as ideal clean energy to solve the environmental crisis. Electrocatalytic water splitting, as the most promising hydrogen production method, has been widely and deeply studied in recent ten years. On the other hand, lithium-ion batteries are considered the most popular energy storage equipment because of their high energy density, high working voltage, and long cycle life. However, the rapid development of society needs cheaper fuel, higher power density, and safer energy storage devices. Therefore, many new and efficient catalysts and electrode materials are being developed and explored. However, their electrochemical reaction mechanism must be clarified before they could be widely used in industry. In recent years, spin-dependent effects have been deeply studied in the field of catalysis and energy storage, which provides a theoretical foundation for analyzing the electrochemical reaction mechanism, preparing and screening promising catalytic and energy storage materials. This work summarizes the influence of spin-dependent effects on the physical and chemical properties of materials, mainly from four aspects, including electrocatalytic water splitting, metal-air batteries, lithium/sodium-sulfur batteries and lithium/sodium-ion batteries. Finally, we put forward some suggestions on the challenges and development of spin-dependent effects in catalysis and energy storage.
1. | M. S. Syali, D. Kumar, K. Mishra, D. K. Kanchan, Energy Storage Materials, 2020, 31, 352 |
2. | Q. Jin, B. Ren, J. Chen, H. Cui, C. Wang, Applied Catalysis B: Environmental, 2019, 256, 117887 |
3. | D. D. Gupta, S. K. Maiti, AIP Conference Proceedings, 2020, 2265, 030531 |
4. | H. He, D. Sun, Y. Tang, H. Wang, M. Shao, Energy Storage Materials, 2019, 23, 233 |
5. | S. Dong, D. Yu, J. Yang, L. Jiang, J. Wang, L. Cheng, Y. Zhou, H. Yue, H. Wang, L. Guo, Adv. Mater., 2020, 32, 1908027 |
6. | L. Zhang, Y. Zhu, Z. Nie, Z. Li, Y. Ye, L. Li, J. Hong, Z. Bi, Y. Zhou, G. Hu, ACS Nano, 2021, 15, 13399 |
7. | Y. Lu, J. L. Qin, T. Shen, Y. F. Yu, K. Chen, Y. Z. Hu, J. N. Liang, M. X. Gong, J. J. Zhang, D. L. Wang, Advanced Energy Materials, 2021, 11, 2101780 |
8. | K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N. P. Brandon, Y. Yin, M. D. Guiver, Nature, 2021, 595, 361 |
9. | R. Yi, F. Dai, M. L. Gordin, S. Chen, D. Wang, Advanced Energy Materials, 2013, 3, 295 |
10. | Q. Ma, Z. Zhao, Y. Zhao, H. Xie, P. Xing, D. Wang, H. Yin, Energy Storage Materials, 2021, 34, 768 |
11. | L. Zhang, P. Liang, X.-l. Man, D. Wang, J. Huang, H.-b. Shu, Z.-g. Liu, L. Wang, Journal of Physics and Chemistry of Solids, 2019, 126, 280 |
12. | H. Wang, K. H. L. Zhang, J. P. Hofmann, V. A. de la Peña O'Shea, F. E. Oropeza, Journal of Materials Chemistry A, 2021, 9, 19465 |
13. | H. Chen, J. Chen, P. Ning, X. Chen, J. Liang, X. Yao, D. Chen, L. Qin, Y. Huang, Z. Wen, ACS Nano, 2021, 15, 12418 |
14. | J. He, X. Zhou, P. Xu, J. Sun, Nano Energy, 2021, 80, 105540 |
15. | B. Xia, T. Wang, J. Ran, S. Jiang, X. Gao, D. Gao, ACS Appl. Mater. Interfaces, 2021, 13, 2447 |
16. | G. Zhou, M. Li, Y. Li, H. Dong, D. Sun, X. Liu, L. Xu, Z. Tian, Y. Tang, Adv. Funct. Mater., 2019, 30, 1905252 |
17. | L. Gu, C. Zhang, Y. Guo, J. Gao, Y. Yu, B. Zhang, ACS Sustainable Chemistry & Engineering, 2019, 7, 3710 |
18. | S. Liu, R.-T. Gao, M. Sun, Y. Wang, T. Nakajima, X. Liu, W. Zhang, L. Wang, Applied Catalysis B: Environmental, 2021, 292, 120063 |
19. | H. Nguyen, R. J. Clément, ACS Energy Letters, 2020, 5, 3848 |
20. | J. Cui, H. Zheng, K. He, Adv. Mater., 2021, 33, 2000699 |
21. | J. Porzio, C. D. Scown, Advanced Energy Materials, 2021, 11, 2100771 |
22. | J. Kasnatscheew, R. Wagner, M. Winter, I. Cekic-Laskovic, Modeling Electrochemical Energy Storage at the Atomic Scale, Springer, Germany, 2018. |
23. | D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li, J. Ma, S. Zhang, Nano-Micro Lett., 2021, 13, 13 |
24. | B. Pandit, S. R. Rondiya, N. Y. Dzade, S. F. Shaikh, N. Kumar, E. S. Goda, A. A. Al-Kahtani, R. S. Mane, S. Mathur, R. R. Salunkhe, ACS Appl. Mater. Interfaces, 2021, 13, 11433 |
25. | D. Muthuraj, R. Murugan, P. R. Rayappan, G. R. Kandregula, K. Ramanujam, New Journal of Chemistry, 2022, 46, 3185 |
26. | W. G. Han, W. B. Park, S. P. Singh, M. Pyo, K. S. Sohn, Phys. Chem. Chem. Phys., 2018, 20, 26405 |
27. | X. Liu, K. Ni, C. Niu, R. Guo, W. Xi, Z. Wang, J. Meng, J. Li, Y. Zhu, P. Wu, Q. Li, J. Luo, X. Wu, L. Mai, ACS Catalysis, 2019, 9, 2275 |
28. | Y. Wu, J. Cai, Y. Xie, S. Niu, Y. Zang, S. Wu, Y. Liu, Z. Lu, Y. Fang, Y. Guan, X. Zheng, J. Zhu, X. Liu, G. Wang, Y. Qian, Adv. Mater., 2020, 32, 1904346 |
29. | Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, ACS Nano, 2018, 12, 245 |
30. | S.-S. Lu, L.-M. Zhang, Y.-W. Dong, J.-Q. Zhang, X.-T. Yan, D.-F. Sun, X. Shang, J.-Q. Chi, Y.-M. Chai, B. Dong, Journal of Materials Chemistry A, 2019, 7, 16859 |
31. | M. Sun, J. Ji, M. Hu, M. Weng, Y. Zhang, H. Yu, J. Tang, J. Zheng, Z. Jiang, F. Pan, C. Liang, Z. Lin, ACS Catalysis, 2019, 9, 8213 |
32. | Y. Shi, T.-T. Zhai, Y. Zhou, W.-X. Xu, D.-R. Yang, F.-B. Wang, X.-H. Xia, Journal of Electroanalytical Chemistry, 2018, 819, 442 |
33. | J. Lim, D. Park, S. S. Jeon, C.-W. Roh, J. Choi, D. Yoon, M. Park, H. Jung, H. Lee, Adv. Funct. Mater., 2018, 28, 1704796 |
34. | Y. Wang, S. Hao, X. Liu, Q. Wang, Z. Su, L. Lei, X. Zhang, ACS Appl. Mater. Interfaces, 2020, 12, 37006 |
35. | S. Zhou, X. Miao, X. Zhao, C. Ma, Y. Qiu, Z. Hu, J. Zhao, L. Shi, J. Zeng, Nat. Commun., 2016, 7, 11510 |
36. | S. Ghosh, B. P. Bloom, Y. Lu, D. Lamont, D. H. Waldeck, The Journal of Physical Chemistry C, 2020, 124, 22610 |
37. | Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, Nano Energy, 2020, 78, 105392 |
38. | Y. Liu, X. Liang, H. Chen, R. Gao, L. Shi, L. Yang, X. Zou, Chinese Journal of Catalysis, 2021, 42, 1054 |
39. | C. Panda, P. W. Menezes, M. Zheng, S. Orthmann, M. Driess, ACS Energy Letters, 2019, 4, 747 |
40. | D. Zhou, P. Li, W. Xu, S. Jawaid, J. Mohammed-Ibrahim, W. Liu, Y. Kuang, X. Sun, ChemNanoMat, 2020, 6, 336 |
41. | X. Peng, X. Jin, B. Gao, Z. Liu, P. K. Chu, Journal of Catalysis, 2021, 398, 54 |
42. | Y. Zhao, S. Wei, K. Pan, Z. Dong, B. Zhang, H.-H. Wu, Q. Zhang, J. Lin, H. Pang, Chemical Engineering Journal, 2021, 421, 129645 |
43. | F. Li, G. F. Han, H. J. Noh, J. P. Jeon, I. Ahmad, S. Chen, C. Yang, Y. Bu, Z. Fu, Y. Lu, J. B. Baek, Nat. Commun., 2019, 10, 4060 |
44. | J. Jian, L. Yuan, H. Qi, X. Sun, L. Zhang, H. Li, H. Yuan, S. Feng, ACS. Appl. Mater. Interfaces, 2018, 10, 40568 |
45. | X. Zhang, L. Zhang, G. G. Zhu, Y. X. Zhu, S. Y. Lu, ACS Appl. Mater. Interfaces, 2020, 12, 7153 |
46. | M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z. L. Wang, Nano Energy, 2017, 37, 136 |
47. | T. Wu, X. Ren, Y. Sun, S. Sun, G. Xian, G. G. Scherer, A. C. Fisher, D. Mandler, J. W. Ager, A. Grimaud, J. Wang, C. Shen, H. Yang, J. Gracia, H. J. Gao, Z. J. Xu, Nat. Commun., 2021, 12, 3634 |
48. | R. Xiang, L. Peng, Z. Wei, Chemistry, 2019, 25, 9799 |
49. | J. Gracia, M. Fianchini, C. Biz, V. Polo, R. Gómez, Current Opinion in Electrochemistry, 2021, 30, 100798 |
50. | Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang, G. Shao, B. Tang, W. Yang, L. Qin, X. Fang, Advanced Energy Materials, 2020, 10, 1903854 |
51. | X. Ren, T. Wu, Y. Sun, Y. Li, G. Xian, X. Liu, C. Shen, J. Gracia, H. J. Gao, H. Yang, Z. J. Xu, Nat. Commun., 2021, 12, 2608 |
52. | H. Liu, X. H. Zhang, Y. X. Li, X. Li, C. K. Dong, D. Y. Wu, C. C. Tang, S. L. Chou, F. Fang, X. W. Du, Advanced Energy Materials, 2020, 10, 1902521 |
53. | H. Tang, D. Yang, M. Lu, S. Kong, Y. Hou, D. Liu, D. Liu, S. Yan, Z. Chen, T. Yu, Z. Zou, Journal of Materials Chemistry A, 2021, 9, 25435 |
54. | W. H. Lai, L. F. Zhang, W. B. Hua, S. Indris, Z. C. Yan, Z. Hu, B. Zhang, Y. Liu, L. Wang, M. Liu, R. Liu, Y. X. Wang, J. Z. Wang, Z. Hu, H. K. Liu, S. L. Chou, S. X. Dou, Angew. Chem. Int. Ed. Engl., 2019, 58, 11868 |
55. | J. Zhang, C. Liu, B. Zhang, Small Methods, 2019, 3, 1800481 |
56. | Z. Li, Z. Wang, S. Xi, X. Zhao, T. Sun, J. Li, W. Yu, H. Xu, T. S. Herng, X. Hai, P. Lyu, M. Zhao, S. J. Pennycook, J. Ding, H. Xiao, J. Lu, ACS Nano, 2021, 15, 7105 |
57. | J. Ran, T. Wang, J. Zhang, Y. Liu, C. Xu, S. Xi, D. Gao, Chemistry of Materials, 2020, 32, 3439 |
58. | K. Wang, P. Pei, Y. Wang, C. Liao, W. Wang, S. Huang, Applied Energy, 2018, 225, 848 |
59. | Y. Rao, S. Chen, Q. Yue, Y. Kang, ACS Catalysis, 2021, 11, 8097 |
60. | M. A. Deyab, Journal of Power Sources, 2019, 412, 520 |
61. | L. Wang, J. Pan, Y. Zhang, X. Cheng, L. Liu, H. Peng, Adv. Mater., 2018, 30, 1704378 |
62. | W. Zang, A. Sumboja, Y. Ma, H. Zhang, Y. Wu, S. Wu, H. Wu, Z. Liu, C. Guan, J. Wang, S. J. Pennycook, ACS Catalysis, 2018, 8, 8961 |
63. | D. Zhang, H. Zhao, F. Liang, W. Ma, Y. Lei, Journal of Power Sources, 2021, 493, 229722 |
64. | X. Zhao, X. Li, Z. Bi, Y. Wang, H. Zhang, X. Zhou, Q. Wang, Y. Zhou, H. Wang, G. Hu, Journal of Energy Chemistry, 2022, 66, 514 |
65. | J. Li, L. Sun, X. Wang, L. Li, Q. Zhu, B. Ouyang, E. Kan, W. Zhang, Chemical Engineering Journal, 2022, 433, 134597 |
66. | L. Diao, T. Yang, B. Chen, B. Zhang, N. Zhao, C. Shi, E. Liu, L. Ma, C. He, Journal of Materials Chemistry A, 2019, 7, 21232 |
67. | D. Chen, X. Chen, Z. Cui, G. Li, B. Han, Q. Zhang, J. Sui, H. Dong, J. Yu, L. Yu, L. Dong, Chemical Engineering Journal, 2020, 399, 125718 |
68. | Y. Sun, J. Wang, Q. Liu, M. Xia, Y. Tang, F. Gao, Y. Hou, J. Tse, Y. Zhao, Journal of Materials Chemistry A, 2019, 7, 27175 |
69. | J. Qian, T. Wang, Z. Zhang, Y. Liu, J. Li, D. Gao, Nano Energy, 2020, 74, 104948 |
70. | X. T. Wang, T. Ouyang, L. Wang, J. H. Zhong, T. Ma, Z. Q. Liu, Angew. Chem. Int. Ed. Engl., 2019, 58, 13291 |
71. | S. Zhang, Y. Yao, Y. Yu, ACS Energy Letters, 2021, 6, 529 |
72. | Z. Yan, Y. Liang, J. Xiao, W. Lai, W. Wang, Q. Xia, Y. Wang, Q. Gu, H. Lu, S. L. Chou, Y. Liu, H. Liu, S. X. Dou, Adv. Mater., 2020, 32, 1906700 |
73. | J. Ding, H. Zhang, W. Fan, C. Zhong, W. Hu, D. Mitlin, Adv. Mater., 2020, 32, 1908007 |
74. | A. Y. S. Eng, V. Kumar, Y. Zhang, J. Luo, W. Wang, Y. Sun, W. Li, Z. W. Seh, Advanced Energy Materials, 2021, 11, 2003493 |
75. | S. F. Ng, M. Y. L. Lau, W. J. Ong, Adv. Mater., 2021, 33, 2008654 |
76. | W. Hua, H. Li, C. Pei, J. Xia, Y. Sun, C. Zhang, W. Lv, Y. Tao, Y. Jiao, B. Zhang, S. Z. Qiao, Y. Wan, Q. H. Yang, Adv. Mater., 2021, 33, 2101006 |
77. | W. Li, X. Guo, P. Geng, M. Du, Q. Jing, X. Chen, G. Zhang, H. Li, Q. Xu, P. Braunstein, H. Pang, Adv. Mater., 2021, 33, 2105163 |
78. | L. M. Bloi, J. Pampel, S. Dörfler, H. Althues, S. Kaskel, Advanced Energy Materials, 2020, 10, 1903245 |
79. | R. Wang, J. Yang, X. Chen, Y. Zhao, W. Zhao, G. Qian, S. Li, Y. Xiao, H. Chen, Y. Ye, G. Zhou, F. Pan, Advanced Energy Materials, 2020, 10, 1903550 |
80. | F. Xiao, X. Yang, H. Wang, J. Xu, Y. Liu, D. Y. W. Yu, A. L. Rogach, Advanced Energy Materials, 2020, 10, 2000931 |
81. | Y. Gao, Q. Guo, Q. Zhang, Y. Cui, Z. Zheng, Advanced Energy Materials, 2021, 11, 2002580 |
82. | Q. Zou, Y. Sun, Z. Liang, W. Wang, Y. C. Lu, Advanced Energy Materials, 2021, 11, 2101552 |
83. | C. Qi, Z. Li, G. Wang, H. Yuan, C. Chen, J. Jin, Z. Wen, Advanced Energy Materials, 2021, 11, 2102024 |
84. | J. Shen, X. Xu, J. Liu, Z. Wang, S. Zuo, Z. Liu, D. Zhang, J. Liu, M. Zhu, Advanced Energy Materials, 2021, 11, 2100673 |
85. | Y. Hu, W. Chen, T. Lei, Y. Jiao, J. Huang, A. Hu, C. Gong, C. Yan, X. Wang, J. Xiong, Advanced Energy Materials, 2020, 10, 2000082 |
86. | H. Yang, S. Zhou, B. W. Zhang, S. Q. Chu, H. Guo, Q. F. Gu, H. Liu, Y. Lei, K. Konstantinov, Y. X. Wang, S. L. Chou, H. K. Liu, S. X. Dou, Adv. Funct. Mater., 2021, 31, 2102280 |
87. | R. Jayan, M. M. Islam, The Journal of Physical Chemistry C, 2021, 125, 4458 |
88. | L. Wang, H. Wang, S. Zhang, N. Ren, Y. Wu, L. Wu, X. Zhou, Y. Yao, X. Wu, Y. Yu, ACS Nano, 2021, 15, 15218 |
89. | C. F. J. Francis, I. L. Kyratzis, A. S. Best, Adv. Mater., 2020, 32, 1904205 |
90. | M. S. Gonzalez, Q. Yan, J. Holoubek, Z. Wu, H. Zhou, N. Patterson, V. Petrova, H. Liu, P. Liu, Adv. Mater., 2020, 32, 1906836 |
91. | N. Muralidharan, R. Essehli, R. P. Hermann, R. Amin, C. Jafta, J. Zhang, J. Liu, Z. Du, H. M. Meyer III, E. Self, J. Nanda, I. Belharouak, Adv. Mater., 2020, 32, 2002960 |
92. | H. Cha, J. Kim, H. Lee, N. Kim, J. Hwang, J. Sung, M. Yoon, K. Kim, J. Cho, Adv. Mater., 2020, 32, 2003040 |
93. | K. Y. Park, Y. Zhu, C. G. Torres-Castanedo, H. J. Jung, N. S. Luu, O. Kahvecioglu, Y. Yoo, J. T. Seo, J. R. Downing, H. D. Lim, M. J. Bedzyk, C. Wolverton, M. C. Hersam, Adv. Mater., 2022, 34, 2106402 |
94. | W. Luo, C. Fang, X. Zhang, J. Liu, H. Ma, G. Zhang, Z. Liu, X. Li, ACS Applied Energy Materials, 2021, 4, 535 |
95. | M. M. Thackeray, Advanced Energy Materials, 2021, 11, 2001117 |
96. | G. Song, R. Gao, Z. Zhao, Y. Zhang, H. Tan, H. Li, D. Wang, Z. Sun, M. Feng, Applied Catalysis B: Environmental, 2022, 301, 120809 |
97. | T. Meng, B. Li, Q. Wang, J. Hao, B. Huang, F. L. Gu, H. Xu, P. Liu, Y. Tong, ACS Nano, 2020, 14, 7066 |
98. | H. Li, Z. Hu, Q. Xia, H. Zhang, Z. Li, H. Wang, X. Li, F. Zuo, F. Zhang, X. Wang, W. Ye, Q. Li, Y. Long, Q. Li, S. Yan, X. Liu, X. Zhang, G. Yu, G. X. Miao, Adv. Mater., 2021, 33, 2006629 |
99. | Q. Du, Y. Wang, Y. Wei, R. J. Koch, L. Wu, W. Zhang, T. C. Asmara, Z. Hu, E. S. Bozin, Y. Zhu, T. Schmitt, G. Kotliar, C. Petrovic, Chemistry of Materials, 2022, 34, 2025 |
100. | E. Oz, S. Demirel, S. Altin, E. Altin, A. Bayri, S. Avci, Electrochimica Acta, 2017, 248, 449 |
101. | E. Watanabe, W. Zhao, A. Sugahara, B. Mortemard de Boisse, L. Lander, D. Asakura, Y. Okamoto, T. Mizokawa, M. Okubo, A. Yamada, Chemistry of Materials, 2019, 31, 2358 |
102. | Z. Li, Y. Zhang, X. Li, F. Gu, L. Zhang, H. Liu, Q. Xia, Q. Li, W. Ye, C. Ge, H. Li, H. Hu, S. Li, Y. Z. Long, S. Yan, G. X. Miao, Q. Li, J. Am. Chem. Soc., 2021, 143, 12800 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
(a) The spin density for CoFe2O4 with and without spin alignment. (b) Schematic of spin-exchange mechanism for OER. (c) The spin-polarization mechanisms in OER. (d) The free energy map of the OER generated by the OER for trimorphic oxygen in and without spin arrangement on the surface of CoFe2O4 (111).[51] Copyright 2021, Springer Nature.
(a) Effective magnetic moments for Cu0.5NFe3.5 and Cu0.5NFe3Ni0.5. (b) The spin transfer routes in Cu0.5NFe3.5 and Cu0.5NFe3Ni0.5, showing the Fe–N–Fe bonds. (c) The core–shell interaction produces a paramagnetic Fe0.5Ni0.5OOH shell. (d) Potential corrected free energy diagram for OER intermediates adsorption on the paramagnetic Fe0.5Ni0.5OOH/ferromagnetic Cu0.5NFe3Ni0.5 model. (e) The orbital interactions between cations and the OER intermediates.[53] Copyright 2021, Royal Society of Chemistry.
(a) Gibbs free-energy diagram for FeNi-LDH and FeNiW-LDH (The shaded green is the determining step for OER process). (b) The calculated DOS curves for FeNi-LDH and FeNiW-LDH. (c) The partial diagram of DOS. (d) The charge density distribution plots for FeNiW-LDH.[14] Copyright 2022, Elsevier.
(a) Schematic illustration of the spin density engineering of a single-metal active site for promoting OER within a ferromagnetic domain. (b) Free energy diagrams of OER on the CoHS sitewith neighboring CoTa and CoHS atoms. (c) Calculated relationship between the spin density of the CoHS atom and the oxygen adsorption energy for the isolated CoHS, CoHS-CoTa, and CoHS-CoHS cases.[56] Copyright 2021, American Chemical Society.
(a) The crystal models of LaCoO3 before and after Ce substitution on La sites. (b) Density of states results of two samples. (c) Schematic representation of the orbital splitting of Co 3d in LaCoO3 and Ce-doped LaCoO3. (d) Schematic representation of interaction between Co3+ and OH* for Ce-doped LaCoO3.[69] Copyright 2022, Elsevier.
(a) Magnetic susceptibility of Co2FeO4. (b) Density of states of Co2FeO4. (c) ORR Tafel plots of different samples in 0.1 M KOH electrolyte.[70] Copyright 2022, John Wiley and Sons.
(a) UV–vis spectra of the Na2S6 in TEGDME solvent after immersed with Co@PCNFs and PCNFs for 10 h. (b) Comparison of DOS between N-G and Co@N-G hybrids. The Fermi level is set as zero. (c) Polysulfides binding energies. (d) Gibbs free energy diagrams for the transformation between polysulfide intermediates on N-G and Co@N-G hybrids.[86] Copyright 2022, John Wiley and Sons.
Field dependent thermal transport and heat capacity. (a) Thermopower and thermal conductivity of FeP2 crystal below 300 K. (b) Heat capacity in 0 and 9 T below 100 K. (c) ΔCp below 100 K and model fitting as described in the text. (d) Fe L2,3-edge XAS spectra at T = 17 K (blue line) and 300 K (red line), respectively.[99] Copyright 2022, American Chemical Society.
(a) Schematic diagram of electron chemical potential of NaxTi0.5Co0.5O2 phases. (b) Discharging process under calculated equilibrium potential between Co3+ LS and Co2+ LS and under cathode cover potential (1.0 V vs. Na/Na+).[101] Copyright 2022, American Chemical Society.
(a) The time-sequenced magnetization and potential response in the first three cycles of FeS2 LIBs. (b) The time-sequenced magnetization and potential response in the first three cycles of FeS2 LIBs. (c) LIBs and SIBs embedding mechanism.[102] Copyright 2021, American Chemical Society.