Citation: | Qian Chen, Yongji Gong. Applications and Challenges of 2D Materials in Lithium Metal Batteries. Materials Lab 2022, 1, 220034. doi: 10.54227/mlab.20220034 |
Owing to the high theoretical specific capacity and low electrochemical potential, lithium (Li) metal is considered as the most promising anode material for next-generation batteries. However, the commercial application of lithium metal batteries (LMBs) is restricted by Li dendritic growth and infinite volume change. Generally, introducing lithiophilic sites and constructing artificial solid-electrolyte interphase (SEI) layer are regarded as effective ways to induce uniform deposition of Li and inhibit growth of Li dendrites. 2D materials, due to their unique planar structure, high specific surface area, high mechanical strength and rich surface chemistry, are expected to achieve high performance LMBs with high stability and safety. Herein, the current progress of 2D materials for LMBs is summarized, focusing on constructing lithiophilic sites and artificial solid-electrolyte interphase (SEI) layer. Perspectives of future directions for LMBs are discussed. With the continuous research of 2D materials in LMBs, it is predictable that 2D materials will have great application prospects and make a difference in high-energy-density LMBs.
1. | W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energ. Envrion. Sci., 2014, 7, 513 |
2. | D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol., 2017, 12, 194 |
3. | B. Liu, J.-G. Zhang, W. Xu, Joule, 2018, 2, 833 |
4. | J. Xiao, Q. Li, Y. Bi, M. Cai, B. Dunn, T. Glossmann, J. Liu, T. Osaka, R. Sugiura, B. Wu, J. Yang, J.-G. Zhang, M. S. Whittingham, Nat. Energy, 2020, 5, 561 |
5. | X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev., 2017, 117, 10403 |
6. | R. Xu, J.-F. Ding, X.-X. Ma, C. Yan, Y.-X. Yao, J.-Q. Huang, Adv. Mater., 2021, 33, 2105962 |
7. | T. Li, H. Liu, P. Shi, Q. Zhang, Rare Metals, 2018, 37, 449 |
8. | C. Yan, R. Xu, Y. Xiao, J.-F. Ding, L. Xu, B.-Q. Li, J.-Q. Huang, Adv. Funct. Mater., 2020, 30, 1909887 |
9. | R. Zhang, X.-R. Chen, X. Chen, X.-B. Cheng, X.-Q. Zhang, C. Yan, Q. Zhang, Angew. Chem. Int. Edit., 2017, 56, 7764 |
10. | Y.-X. Zhan, P. Shi, X.-X. Ma, C.-B. Jin, Q.-K. Zhang, S.-J. Yang, B.-Q. Li, X.-Q. Zhang, J.-Q. Huang, Adv. Energy. Mater., 2022, 12, 2103291 |
11. | B. Liu, Y. Zhang, G. Pan, C. Ai, S. Deng, S. Liu, Q. Liu, X. Wang, X. Xia, J. Tu, J. Mater. Chem. A, 2019, 7, 21794 |
12. | P. Zhai, L. Liu, X. Gu, T. Wang, Y. Gong, Adv. Energy. Mater., 2020, 10, 2001257 |
13. | C. Zhang, A. Wang, J. Zhang, X. Guan, W. Tang, J. Luo, Adv. Energy. Mater., 2018, 8, 1802833 |
14. | H. Que, H. Jiang, X. Wang, P. Zhai, L. Meng, P. Zhang, Y. Gong, Acta Phys.-Chim. Sin., 2021, 37, 2010051 |
15. | L. Chen, H. Chen, Z. Wang, X. Gong, X. Chen, M. Wang, S. Jiao, Chem. Eng. J., 2019, 363, 270 |
16. | S.-S. Chi, Q. Wang, B. Han, C. Luo, Y. Jiang, J. Wang, C. Wang, Y. Yu, Y. Deng, Nano Lett., 2020, 20, 2724 |
17. | C.-H. Chang, S.-H. Chung, A. Manthiram, Adv. Sustain. Syst., 2017, 1, 1600034 |
18. | D. Lin, Y. Liu, Z. Liang, H.-W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol., 2016, 11, 626 |
19. | W. Liu, P. Zhai, S. Qin, J. Xiao, Y. Wei, W. Yang, S. Cui, Q. Chen, C. Jin, S. Yang, Y. Gong, J. Energy. Chem., 2021, 56, 463 |
20. | Y. Li, Y. Li, Y. Sun, B. Butz, K. Yan, A. L. Koh, J. Zhao, A. Pei, Y. Cui, Nano Lett., 2017, 17, 5171 |
21. | Q. Yang, M. Cui, J. Hu, F. Chu, Y. Zheng, J. Liu, C. Li, ACS Nano, 2020, 14, 1866 |
22. | P. Zhai, T. Wang, W. Yang, S. Cui, P. Zhang, A. Nie, Q. Zhang, Y. Gong, Adv. Energy Mater., 2019, 9, 1804019 |
23. | Z. Yang, Y. Dang, P. Zhai, Y. Wei, Q. Chen, J. Zuo, X. Gu, Y. Yao, X. Wang, F. Zhao, J. Wang, S. Yang, P. Tang, Y. Gong, Adv. Energy Mater., 2022, 12, 2103368 |
24. | P. Zhai, L. Liu, Y. Wei, J. Zuo, Z. Yang, Q. Chen, F. Zhao, X. Zhang, Y. Gong, Nano Lett., 2021, 21, 7715 |
25. | Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, L. Koh Ai, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science, 2017, 358, 506 |
26. | R. L. Sacci, N. J. Dudney, K. L. More, L. R. Parent, I. Arslan, N. D. Browning, R. R. Unocic, Chem. Commun., 2014, 50, 2104 |
27. | Q. Wu, Y. Zheng, X. Guan, J. Xu, F. Cao, C. Li, Adv. Funct. Mater., 2021, 31, 2101034 |
28. | J. Xiao, P. Zhai, Y. Wei, X. Zhang, W. Yang, S. Cui, C. Jin, W. Liu, X. Wang, H. Jiang, Z. Luo, X. Zhang, Y. Gong, Nano Lett., 2020, 20, 3911 |
29. | Q. Chen, Y. Wei, X. Zhang, Z. Yang, F. Wang, W. Liu, J. Zuo, X. Gu, Y. Yao, X. Wang, F. Zhao, S. Yang, Y. Gong, Adv. Energy Mater., 2022, 12, 2200072 |
30. | P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei, L. Wang, W. Liu, Q. Chen, W. Yang, Y. Cui, Y. Gong, Adv. Mater., 2021, 33, 2006247 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
2D materials in LMBs. (a) Li adsorption energy distribution mappings and corresponding schematic illustrations of Li nucleation and plating process on SA metal-NG electrode[22]. Copyright 2019, Wiley-VCH. (b) Binding energy of Li atoms on different substrates and coulombic efficiency of Li deposition on electrodes with a capacity of 1 mAh cm–2 at 1 mA cm–2[23]. Copyright 2022, Wiley-VCH. (c) Schematic illustration and SEM image of uniform Li plating/stripping behavior seeded by liquid GaIn NPs and voltage-areal capacity curve corresponding to the nucleation process of bare C and GaIn NPs@C electrodes[24]. Copyright 2021, American Chemical Society. (d) Schematic illustrations of Li deposition and surface structure on Li metal anodes with GFNs-PVDF@PP separator and Electrochemical performances of symmetric Li|Li cells with a capacity 3 mAh cm−2 at a current density of 20 mA cm−2[28]. Copyright 2020, American Chemical Society. (e) Schematic illustration of uniform Li plating/stripping behavior of vertical MXene electrodes and horizontal MXene electrodes[29]. Copyright 2022, Wiley-VCH. (f) Illustration of Li deposition in the van der Waals gap between graphene and g-C3N4[30]. Copyright 2021, Wiley-VCH.