Citation: | Qixian Zhang, Huicong Liu, Weiping Li, Haining Chen. Carbon-Based CsPbI3 Perovskite Solar Cells. Materials Lab 2022, 1, 220029. doi: 10.54227/mlab.20220029 |
The perovskite solar cells (PSCs) based on carbon electrode (C-PSCs) are expected to address the instability issues faced by conventional PSCs. Recently, inorganic perovskites have been widely used as the light absorber in C-PSCs, which tended to further enhance device stability. Among various inorganic perovskites, CsPbI3 perovskite has been showing the greatest promise due to its suitable band gap (~1.7 eV) and high chemical stability. Benefiting from the progresses on phase stability, crystal quality and surface defect passivation, CsPbI3 C-PSCs have achieved the efficiency of over 15% and exhibited considerable enhancement in device stability. In this perspective, the main advances on CsPbI3 C-PSCs will be highlighted and the future research directions will be proposed.
1. | M. Kim, J. Jeong, H. Lu, K. Lee Tae, T. Eickemeyer Felix, Y. Liu, W. Choi In, J. Choi Seung, Y. Jo, H.-B. Kim, S.-I. Mo, Y.-K. Kim, H. Lee, G. An Na, S. Cho, R. Tress Wolfgang, M. Zakeeruddin Shaik, A. Hagfeldt, Y. Kim Jin, M. Grätzel and S. Kim Dong, Science, 2022, 375, 302 |
2. | X. Luo, Z. Shen, Y. Shen, Z. Su, X. Gao, Y. Wang, Q. Han and L. Han, Adv. Mater., 2022, 34, 2202100 |
3. | J. Y. Seo, S. Akin, M. Zalibera, M. A. R. Preciado, H. S. Kim, S. M. Zakeeruddin, J. V. Milić and M. Grätzel, Advanced Functional Materials, 2021, 31, 2102124 |
4. | C. Ding, R. Huang, C. Ahläng, J. Lin, L. Zhang, D. Zhang, Q. Luo, F. Li, R. Österbacka and C.-Q. Ma, Journal of Materials Chemistry A, 2021, 9, 7575 |
5. | H. Chen and S. Yang, Adv. Mater., 2017, 29, 1603994 |
6. | H. Chen, S. Xiang, W. Li, H. Liu, L. Zhu and S. Yang, Solar RRL, 2018, 2, 1700188 |
7. | X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu and H. Chen, ACS Applied Materials & Interfaces, 2016, 8, 33649 |
8. | J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin and J. Liu, Journal of the American Chemical Society, 2016, 138, 15829 |
9. | Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang, X. Yang, Y. Duan and Q. Tang, Adv. Sci., 2021, 8, 2101418 |
10. | C. Dong, B. Xu, D. Liu, E. G. Moloney, F. Tan, G. Yue, R. Liu, D. Zhang, W. Zhang and M. I. Saidaminov, Materials Today, 2021, 50, 239 |
11. | Q. Guo, J. Duan, J. Zhang, Q. Zhang, Y. Duan, X. Yang, B. He, Y. Zhao and Q. Tang, Adv. Mater., 2022, 34, 2202301 |
12. | W. Zhu, J. Ma, W. Chai, T. Han, D. Chen, X. Xie, G. Liu, P. Dong, H. Xi, D. Chen, J. Zhang, C. Zhang and Y. Hao, Solar RRL, 2022, 6, 2200020 |
13. | H. Wang, H. Liu, Z. Dong, T. Song, W. Li, L. Zhu, Y. Bai and H. Chen, Nano Energy, 2021, 89, 106411 |
14. | X. Fu, W. Li, X. Zeng, C. Yan, X. Peng, Y. Gao, Q. Wang, J. Cao, S. Yang and W. Yang, J. Phys. Chem. Lett., 2022, 13, 2217 |
15. | H. Wang, H. Liu, Z. Dong, W. Li, L. Zhu and H. Chen, Nano Energy, 2021, 84, 105881 |
16. | W. Meng, Y. Hou, A. Karl, E. Gu, X. Tang, A. Osvet, K. Zhang, Y. Zhao, X. Du, J. Garcia Cerrillo, N. Li and C. J. Brabec, ACS Energy Letters, 2020, 5, 271 |
17. | Z. Li, F. Zhou, Q. Wang, L. Ding and Z. Jin, Nano Energy, 2020, 71, 104634 |
18. | J. Liang, C. Wang, P. Zhao, Z. Lu, Y. Ma, Z. Xu, Y. Wang, H. Zhu, Y. Hu, G. Zhu, L. Ma, T. Chen, Z. Tie, J. Liu and Z. Jin, Nanoscale, 2017, 9, 11841 |
19. | S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu and H. Chen, Nanoscale, 2018, 10, 9996 |
20. | S. Xiang, Z. Fu, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, R. Zhang and H. Chen, ACS Energy Letters, 2018, 3, 1824 |
21. | J. Liang, X. Han, J. H. Yang, B. Zhang, Q. Fang, J. Zhang, Q. Ai, M. M. Ogle, T. Terlier, A. A. Marti and J. Lou, Adv. Mater., 2019, 31, 1903448 |
22. | S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, S. Yang and H. Chen, iScience, 2019, 15, 156 |
23. | H. Wang, H. Liu, Z. Dong, X. Wei, Y. Song, W. Li, L. Zhu, Y. Bai and H. Chen, Nano Energy, 2022, 94, 106925 |
24. | S. Tan, B. Yu, Y. Cui, F. Meng, C. Huang, Y. Li, Z. Chen, H. Wu, J. Shi, Y. Luo, D. Li and Q. Meng, Angew. Chem. Int. Ed. Engl., 2022, 61, e202201300 |
25. | X. Wang, Y. Wang, Y. Chen, X. Liu and Y. Zhao, Adv. Mater., 2021, 33, 2103688 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The device structure of (a) conventional PSCs and (b) PSCs based on carbon electrodes (C-PSCs). (c) Energy band diagrams of CsPbI3-xBrx C-PSCs[10]. Copyright 2021, Elsevier Ltd. (d) Evolution of the reported PCEs of CsPbI3 C-PSCs[13,15,18-23].