Citation: | Shiteng Zhao, Zezhou Li. High Entropy Alloys for Extreme Load-Bearing Applications. Materials Lab 2022, 1, 220035. doi: 10.54227/mlab.20220035 |
High entropy alloys (HEAs) have emerged as a new class of materials that can exhibit superior mechanical properties to the conventional alloy systems. Therefore, they are promising candidates as the next generation structural materials. As the studies into the HEAs deepen, the original proposal of equal concentration of each element while remaining a single phased structure has been expanded and new opportunities start to emerge. Here we briefly discuss several future directions for HEAs which include fundamental questions such as chemical short-range order and synergistic strengthening mechanisms, as well as HEA’s potential applications under extreme conditions such as high-temperature and cryogenic load-bearing, impact protection and kinetic penetrator.
1. | J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang, Advanced Engineering Materials, 2004, 6, 299 |
2. | B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent, Materials Science and Engineering: A, 2004, 375−377, 213 |
3. | Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw and Z. P. Lu, Progress in Materials Science, 2014, 61, 1 |
4. | B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George and R. O. Ritchie, Science, 2014, 345, 1153 |
5. | O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang and P. K. Liaw, Intermetallics, 2010, 18, 1758 |
6. | O. N. Senkov, G. B. Wilks, J. M. Scott and D. B. Miracle, Intermetallics, 2011, 19, 698 |
7. | D. B. Miracle, J. D. Miller, O. N. Senkov, C. Woodward, M. D. Uchic and J. Tiley, Entropy, 2014, 16, 494 |
8. | J. Ding, Q. Yu, M. Asta and R. O. Ritchie, Proc. Natl. Aca. Sci. U. S. A., 2018, 115, 8919 |
9. | R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R. O. Ritchie and A. M. Minor, Nature, 2020, 581, 283 |
10. | Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, O. Ritchie and Q. Yu, Nature, 2019, 574, 223 |
11. | X. Chen, Q. Wang, Z. Cheng, M. Zhu, H. Zhou, P. Jiang, L. Zhou, Q. Xue, F. Yuan, J. Zhu, X. Wu and E. Ma, Nature, 2021, 592, 712 |
12. | Y. Ma, Q. Wang, C. Li, L. J. Santodonato, M. Feygenson, C. Dong and P. K. Liaw, Scripta Materialia, 2018, 144, 64 |
13. | H. Li, H. Zong, S. Li, S. Jin, Y. Chen, M. J. Cabral, B. Chen, Q. Huang, Y. Chen, Y. Ren, K. Yu, S. Han, X. Ding, G. Sha, J. Lian, X. Liao, E. Ma and J. Sun, Nature, 2022, 604, 273 |
14. | Z. Li, K. G. Pradeep, Y. Deng, D. Raabe and C. C. Tasan, Nature, 2016, 534, 227 |
15. | K. Ming, W. Lu, Z. Li, X. Bi and J. Wang, Acta Materialia, 2020, 188, 354 |
16. | T. Yang, Y. L. Zhao, Y. Tong, Z. B. Jiao, J. Wei, J. X. Cai, X. D. Han, D. Chen, A. Hu, J. J. Kai, K. Lu, Y. Liu and C. T. Liu, Science, 2018, 362, 933 |
17. | E. Ma and X. Wu, Nature Communications, 2019, 10, 5623 |
18. | Q. Pan, L. Zhang, R. Feng, Q. Lu, K. An, A. C. Chuang, J. D. Poplawsky, P. K. Liaw and L. Lu, Science, 2021, 374, 984 |
19. | C. Lee, G. Kim, Y. Chou, B. L. Musicó, M. C. Gao, K. An, G. Song, Y.-C. Chou, V. Keppens, W. Chen and P. K. Liaw, Science Advances, 2020, 6, eaaz4748 |
20. | S. Wei, S. J. Kim, J. Kang, Y. Zhang, Y. Zhang, T. Furuhara, E. S. Park, C. C. Tasan, Nature Materials, 2020, 19, 1175 |
21. | F. Wang, G. H. Balbus, S. Xu, Y. Su, J. Shin, P. F. Rottmann, K. E. Knipling, J.-C. Stinville, L. H. Mills, O. N. Senkov, I. J. Beyerlein, T. M. Pollock and D. S. Gianola, Science, 2020, 370, 95 |
22. | Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.-G. Nieh and Z. Lu, Nature, 2018, 563, 546 |
23. | W. Huang, P. Martin and H. L. Zhuang, Acta Materialia, 2019, 169, 225 |
24. | X. F. Liu, Z. L. Tian, X. F. Zhang, H. H. Chen, T. W. Liu, Y. Chen, Y. J. Wang, L. H. Dai, Acta Materialia, 2020, 186, 257 |
25. | A. Liu, L. Wang, L. Pan, X. Cheng, Materials Science and Engineering: A, 2021, 824, 141797 |
26. | Z. Li, S. Zhao, S. M. Alotaibi, Y. Liu B. Wang, M. A. Meyers, Acta Materialia, 2018, 151, 424 |
27. | S. Zhao, Z. Li, C. Zhu, W. Yang, Z. Zhang, D. E. Armstrong, P. S. Grant, R. O. Ritchie, Science Advances, 2021, 7, eabb3108 |
28. | M. C. Hawkins, S. Thomas, R. Hixson, J. Gigax, N. Li, C. Liu, J. A. Valdez, S. Fensin, Materials Science and Engineering: A, 2022, 840, 142906 |
29. | D. Thürmer, S. Zhao, O. R. Deluigi, C. Stan, I. A. Alhafez, H. M. Urbassek, M. A. Meyers, E. M. Bringa, N. Gunkelmann, Journal of Alloys and Compounds, 2022, 895, 162567 |
30. | W. R. Jian, Z. Xie, S. Xu, X. Yao, I. J. Beyerlein, Scripta Materialia, 2022, 209, 114379 |
31. | Y. Jia, G. Wang, S. Wu, Y. Mu, Y. Yi, Y. Jia, P. K. Liaw, T. Zhang, C.-T. Liu, Applied Materials Today, 2022, 27, 101429 |
32. | R. Feng, C. Zhang, M. C. Gao, Z. Pei, F. Zhang, Y. Chen, D. Ma, K. An, J. D. Poplawsky, L. Ouyang, Y. Ren, J. A. Hawk, M. Widom, P. K. Liaw, Nature Communications, 2021, 12, 4329 |
33. | O. Maulik, D. Kumar, S. Kumar, S. K. Dewangan, V. Kumar, Materials Research Express, 2018, 5, 052001 |
34. | Y. Zhang, Amorphous Alloys and High Entropy Materials, Viser Technology, Singapore, 2022. |
35. | T. Xie, Z. Xiong, Z. Liu, G. Deng, X. Cheng, Materials & Design, 2021, 202, 109569 |
36. | J. L. Cann, A. De Luca, D. C. Dunand, D. Dye, D. B. Miracle, H. S. Oh, E. A. Olivetti, T. M. Pollock, W. J. Poole, R. Yang, C. C. Tasan, Progress in Materials Science, 2021, 117, 100722 |
37. | C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, M.-R. He, I. M. Robertson, W. J. Weber, L. Wang, Nature Communications, 2016, 7, 13564 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
A simplified periodic table for the high entropy alloys with a focus on transition metals-based FCC family and refractory metals-based BCC family. Note that there are other HEAs with less common elements which are not included in this diagram.