Citation: | Xiang Feng, Ruilin Dong, Tianshuai Wang, Qianfan Zhang. Ab-Initio Simulations Accelerate the Development of High-Performance Lithium-Sulfur Batteries. Materials Lab 2022, 1, 220031. doi: 10.54227/mlab.20220031 |
Lithium-sulfur batteries (LSBs) are promising candidates for next-generation cost-effective and high-energy-density rechargeable batteries. However, cathodes, anodes, and electrolytes of LSBs all face multiple technological challenges. Nowadays, theoretical models play an increasingly important role in LSBs in probing highly catalytic cathodes, dendrite-free anodes, and stable electrolytes. In this perspective, first, the LSBs theoretical research projects our group participated in are reviewed, focusing on highlighting the interpretation and guidance of ab-initio simulations on experiments. Next, the prospect of combining automated workflow managers, machine learning techniques with ab-initio simulations is presented, hoping to introduce a new paradigm for LSBs research and development.
1. | J. B. Goodenough and K. S. Park, J. Am. Chem. Soc., 2013, 135, 1167 |
2. | P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J. M. Tarascon, Nat. Mater., 2012, 11, 19 |
3. | Z. W. Seh, Y. M. Sun, Q. F. Zhang and Y. Cui, Chem. Soc. Rev., 2016, 45, 5605 |
4. | W. G. Lim, S. Kim, C. Jo and J. Lee, Angew. Chem. Int. Ed., 2019, 58, 18746 |
5. | J. Liang, Z. H. Sun, F. Li and H. M. Cheng, Energy Storage Mater., 2016, 2, 76 |
6. | X. L. Ji, K. T. Lee and L. F. Nazar, Nat. Mater., 2009, 8, 500 |
7. | T. Z. Hou, X. Chen, H. J. Peng, J. Q. Huang, B. Q. Li, Q. Zhang and B. Li, Small, 2016, 12, 3283 |
8. | X. Chen, H. J. Peng, R. Zhang, T. Z. Hou, J. Q. Huang, B. Li and Q. Zhang, ACS Energy Lett., 2017, 2, 795 |
9. | Z. Lian, M. Yang, F. Jan and B. Li, J. Phys. Chem. Lett., 2021, 12, 7053 |
10. | Z. W. Seh, J. H. Yu, W. Y. Li, P. C. Hsu, H. T. Wang, Y. M. Sun, H. B. Yao, Q. F. Zhang and Y. Cui, Nat. Commun., 2014, 5, 5017 |
11. | Q. F. Zhang, Y. P. Wang, Z. W. Seh, Z. H. Fu, R. F. Zhang and Y. Cui, Nano Lett., 2015, 15, 3780 |
12. | G. M. Zhou, H. Z. Tian, Y. Jin, X. Y. Tao, B. F. Liu, R. F. Zhang, Z. W. Seh, D. Zhuo, Y. Y. Liu, J. Sun, J. Zhao, C. X. Zu, D. S. Wu, Q. F. Zhang and Y. Cui, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 840 |
13. | J. W. Xiao, G. M. Zhou, H. T. Chen, X. Feng, D. Legut, Y. C. Fan, T. S. Wang, Y. Cui and Q. F. Zhang, Nano Lett., 2019, 19, 7487 |
14. | G. Y. Zheng, Q. F. Zhang, J. J. Cha, Y. Yang, W. Y. Li, Z. W. Seh and Y. Cui, Nano Lett., 2013, 13, 1265 |
15. | Z. W. Seh, Q. F. Zhang, W. Y. Li, G. Y. Zheng, H. B. Yao and Y. Cui, Chem. Sci., 2013, 4, 3673 |
16. | J. M. Zheng, J. Tian, D. X. Wu, M. Gu, W. Xu, C. M. Wang, F. Gao, M. H. Engelhard, J. G. Zhang, J. Liu and J. Xiao, Nano Lett., 2014, 14, 2345 |
17. | W. Y. Li, Q. F. Zhang, G. Y. Zheng, Z. W. Seh, H. B. Yao and Y. Cui, Nano Lett., 2013, 13, 5534 |
18. | Z. W. Seh, H. T. Wang, P. C. Hsu, Q. F. Zhang, W. Y. Li, G. Y. Zheng, H. B. Yao and Y. Cui, Energy Environ. Sci., 2014, 7, 672 |
19. | H. T. Wang, Q. F. Zhang, H. B. Yao, Z. Liang, H. W. Lee, P. C. Hsu, G. Y. Zheng and Y. Cui, Nano Lett., 2014, 14, 7138 |
20. | J. Yu, J. W. Xiao, A. R. Li, Z. Yang, L. Zeng, Q. F. Zhang, Y. J. Zhu and L. Guo, Angew. Chem. Int. Ed., 2020, 59, 13071 |
21. | W. W. Yang, J. W. Xiao, Y. Ma, S. Q. Cui, P. Zhang, P. B. Zhai, L. J. Meng, X. G. Wang, Y. Wei, Z. G. Du, B. X. Li, Z. B. Sun, S. B. Yang, Q. F. Zhang and Y. J. Gong, Adv. Energy Mater., 2019, 9, 1803137 |
22. | G. M. Zhou, S. Y. Wang, T. S. Wang, S. Z. Yang, B. Johannessen, H. Chen, C. W. Liu, Y. S. Ye, Y. C. Wu, Y. C. Peng, C. Liu, S. P. Jiang, Q. F. Zhang and Y. Cui, Nano Lett., 2020, 20, 1252 |
23. | P. B. Zhai, T. S. Wang, W. W. Yang, S. Q. Cui, P. Zhang, A. M. Nie, Q. F. Zhang and Y. J. Gong, Adv. Energy Mater., 2019, 9, 1804019 |
24. | T. S. Wang, P. B. Zhai, D. Legut, L. Wang, X. P. Liu, B. X. Li, C. X. Dong, Y. C. Fan, Y. J. Gong and Q. F. Zhang, Adv. Energy Mater., 2019, 9, 1804000 |
25. | H. Z. Tian, Z. W. Seh, K. Yan, Z. H. Fu, P. Tang, Y. Y. Lu, R. F. Zhang, D. Legut, Y. Cui and Q. F. Zhang, Adv. Energy Mater., 2017, 7, 1602528 |
26. | J. G. Zhu, P. K. Li, X. Chen, D. Legut, Y. C. Fan, R. F. Zhang, Y. Y. Lu, X. B. Cheng and Q. F. Zhang, Energy Storage Mater., 2019, 16, 426 |
27. | X. Chen, X. R. Chen, T. Z. Hou, B. Q. Li, X. B. Cheng, R. Zhang and Q. Zhang, Sci. Adv., 2019, 5, eaau7728 |
28. | X. X. Ma, X. Chen, Y. K. Bai, X. Shen, R. Zhang and Q. Zhang, Small, 2021, 17, 2007142 |
29. | J. Y. Jiao, G. M. Lai, L. Zhao, J. Z. Lu, Q. D. Li, X. Q. Xu, Y. Jiang, Y. B. He, C. Y. Ouyang, F. Pan, H. Li and J. X. Zheng, Adv. Sci., 2022, 9, 2105574 |
30. | N. N. Rajput, V. Murugesan, Y. Shin, K. S. Han, K. C. Lau, J. Z. Chen, J. Liu, L. A. Curtiss, K. T. Mueller and K. A. Persson, Chem. Mater., 2017, 29, 3375 |
31. | E. P. Kamphaus and P. B. Balbuena, J. Phys. Chem. C, 2021, 125, 20157 |
32. | X. Chen, T. Z. Hou, B. Li, C. Yan, L. Zhu, C. Guan, X. B. Cheng, H. J. Peng, J. Q. Huang and Q. Zhang, Energy Storage Mater., 2017, 8, 194 |
33. | A. Jain, S. P. Ong, W. Chen, B. Medasani, X. H. Qu, M. Kocher, M. Brafman, G. Petretto, G. M. Rignanese, G. Hautier, D. Gunter and K. A. Persson, Concurr. Comput. Pract. Exp., 2015, 27, 5037 |
34. | K. Mathew, J. H. Montoya, A. Faghaninia, S. Dwarakanath, M. Aykol, H. M. Tang, I. H. Chu, T. Smidt, B. Bocklund, M. Horton, J. Dagdelen, B. Wood, Z. K. Liu, J. Neaton, S. P. Ong, K. Persson and A. Jain, Comput. Mater. Sci., 2017, 139, 140 |
35. | M. Uhrin, S. P. Huber, J. S. Yu, N. Marzari and G. Pizzi, Comput. Mater. Sci., 2021, 187, 110086 |
36. | J. J. Mortensen, M. Gjerding and K. S. Thygesen, J. Open Source Softw., 2020, 5, 1844 |
37. | C. W. Glass, A. R. Oganov and N. Hansen, Comput. Phys. Commun., 2006, 175, 713 |
38. | Y. Wang, J. Lv, L. Zhu and Y. Ma, Phys. Rev. B, 2010, 82, 094116 |
39. | X. Chen, X. Y. Liu, X. Shen and Q. Zhang, Angew. Chem. Int. Ed., 2021, 60, 24354 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Challenges of Li-S batteries and their possible solutions.
Ab-initio simulations improving the performance and revealing the mechanisms of S cathodes. (a) The most stable configuration of a Li2S molecule adsorbed on a single layer of TiS2 with an adsorption energy of 2.99 eV.[10] Copyright 2014, Macmillan Publishers Limited. (b) Binding energies between Li2Sn (n = 1, 2, 4, 6, 8) and various 2D anchoring materials.[11] Copyright 2015, American Chemical Society. (c) Decomposition energy barriers of Li2S molecule on the surfaces of a series of MxSy.[12] Copyright 2017, National Academy of Sciences. (d) Formation energy evolution profile of Li2Sn (n = 1, 2, 4, 6, 8) from small molecules to large clusters and solid phases.[13] Copyright 2019, American Chemical Society.
Ab-initio simulations assisted development of dendrite free Li anodes. (a) The configuration of Li adsorbed on SA metal-NG.[23] Copyright 2019, WILEY-VCH. (b) Distribution map of binding energies of Li on different adsorption sites of SA metal-NG.[23] Copyright 2019, WILEY-VCH. (c) Distribution map of binding energies of Li on different adsorption sites of SG.[24] Copyright 2019, WILEY-VCH. (d) Charge density difference of SG. Charge accumulation and loss are represented by violet and pink, respectively.[24] Copyright 2019, WILEY-VCH. (e) A dendrite free Li nucleation and plating process.[23] Copyright 2019, WILEY-VCH .