Citation: | Chengxue Qu, Liang Zhao, Jingjing Wan. Synthesis and Applications of Dendrimer-Modified Mesoporous Nanoparticles. Materials Lab 2022, 1, 220018. doi: 10.54227/mlab.20220018 |
Because of their excellent physical properties, mesoporous nanoparticles have been widely studied, especially in the aspect of surface functionalization, which has had a profound impact in many fields of scientific research. Dendrimers, as a kind of three-dimensional macromolecules, also have been widely concerned and studied on account of their unique structural properties. Combining dendrimers with mesoporous nanoparticles can fabricate novel hybrid nanomaterials that possess the advantages of both dendrimers and mesoporous nanoparticles, which may meet the need of the increasing application demands in many fields. This review mainly introduces some of the extensive applications of dendrimers and mesoporous nanoparticles combined in recent years, and briefly summarizes their synthesis methods.
1. | J. Yang, Q. Zhang, H. Chang, Y. Cheng, Chem. Rev., 2015, 115, 5274 |
2. | A. P. Dias, S. da Silva Santos, J. V. da Silva, R. Parise-Filho, E. Igne Ferreira, O. E. Seoud, J. Giarolla, Int. J. Pharm., 2020, 573, 118814 |
3. | E. J. Acosta, C. S. Carr, E. E. Simanek, D. F. Shantz, Adv. Mater., 2004, 16, 985 |
4. | J. S. Choi, D. K. Joo, C. H. Kim, K. Kim, J. S. Park, J. Am. Chem. Soc., 2000, 122, 474 |
5. | E. Abbasi, S. F. Aval, A. Akbarzadeh, M. Milani, H. T. Nasrabadi, S. W. Joo, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl, Nanoscale Res. Lett., 2014, 9, 247 |
6. | E. Karakhanov, A. Maximov, Y. Kardasheva, V. Semernina, A. Zolotukhina, A. Ivanov, G. Abbott, E. Rosenberg, V. Vinokurov, ACS Appl. Mater. Interfaces, 2014, 6, 8807 |
7. | Á. Martínez, E. Fuentes-Paniagua, A. Baeza, J. Sánchez-Nieves, M. Cicuéndez, R. Gómez, F. J. de la Mata, B. González, M. Vallet-Regí, Chem. Eur. J., 2015, 21, 15651 |
8. | C. Guo, J. Hu, A. Bains, D. Pan, K. Luo, N. Li, Z. Gu, J. Mater. Chem. B, 2016, 4, 2322 |
9. | D. Riegert, L. Bareille, R. Laurent, J.-P. Majoral, A.-M. Caminade, A. Chaumonnot, Eur. J. Inorg. Chem., 2016, 2016, 3103 |
10. | M. Shen, X. Shi, Nanoscale, 2010, 2, 1596 |
11. | M. Heidarizadeh, E. Doustkhah, F. Saberi, S. Rostamnia, A. Hassankhani, P. F. Rezaei, Y. Ide, ChemistrySelect, 2018, 3, 7137 |
12. | C. J. Hawker, J. M. J. Frechet, J. Am. Chem. Soc., 1990, 112, 7638 |
13. | J. Ledesma-García, R. Barbosa, T. W. Chapman, L. G. Arriaga, L. A. Godínez, Int. J. Hydrogen Energy, 2009, 34, 2008 |
14. | M. Arkas, D. Tsiourvas, C. M. Paleos, Chem. Mater., 2005, 17, 3439 |
15. | S. Chandra, M. D. Patel, H. Lang, D. Bahadur, J. Power Source, 2015, 280, 217 |
16. | B. González, M. Colilla, C. L. de Laorden, M. Vallet-Regí, J. Mater. Chem., 2009, 19, 9012 |
17. | Y. Cheng, L. Zhao, Y. Li, T. Xu, Chem. Soc. Rev., 2011, 40, 2673 |
18. | A. Santos, F. Veiga, A. Figueiras, Materials, 2020, 13, 65 |
19. | Y. Gao, Y. Zhang, Y. Zhou, C. Zhang, H. Zhang, S. Zhao, J. Fang, M. Huang, X. Sheng, J. Colloid Interf. Sci., 2017, 503, 178 |
20. | P. Hodge, Nature, 1993, 362, 18 |
21. | E. Buhleier, W. Wehner, F. Voegtle, Synthesis, 1978, 2, 155 |
22. | D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, Polym. J., 1985, 17, 117 |
23. | S. R. Barman, A. Nain, S. Jain, N. Punjabi, S. Mukherji, J. Satija, J. Mater. Chem. B, 2018, 6, 2368 |
24. | J. Bae, W. S. Son, K. H. Yoo, S. Y. Yoon, M. K. Bae, D. J. Lee, C. C. Ko, Y. K. Choi, Y. I. Kim, Nanomaterials (Basel), 2019, 9, 591 |
25. | Q. Wang, Y. Zhang, Y. Zhou, Z. Zhang, Y. Xu, C. Zhang, X. Sheng, New J. Chem., 2015, 39, 9942 |
26. | X. Zhang, S. Zhang, H. Qin, W. Wu, Mater. Res. Bull., 2014, 56, 12 |
27. | C. Fu, C. Deng, F. Zhou, D. Yi, Y. Zhang, X. Wang, Y. Tang, Y. Wang, J. Colloid Interf. Sci., 2020, 570, 223 |
28. | M. Pawlaczyk, G. Schroeder, J. Mol. Liq., 2019, 281, 176 |
29. | L. Kulikov, M. Kalinina, D. Makeeva, A. Maximov, Y. Kardasheva, M. Terenina, E. Karakhanov, Catalysts, 2020, 10, 1106 |
30. | C. H. Campos, C. F. Díaz, J. L. Guzmán, J. B. Alderete, C. C. Torres, V. A. Jiménez, Macromol. Chem. Phys., 2016, 217, 1712 |
31. | W. Tang, M. L. Becker, Chem. Soc. Rev., 2014, 43, 7013 |
32. | C. Guo, J. Hu, L. Kao, D. Pan, K. Luo, N. Li, Z. Gu, ACS Biomater. Sci. Eng., 2016, 2, 860 |
33. | B. Wang, K. Zhang, J. Wang, R. Zhao, Q. Zhang, X. Kong, Colloid Surface B, 2020, 189, 110832 |
34. | D. Wan, C. Yan, Y. Liu, K. Zhu, Q. Zhang, Microporous Mesoporous Mater., 2019, 280, 46 |
35. | N. Pramanik, T. Imae, Langmuir, 2012, 28, 14018 |
36. | B. González, M. Colilla, J. Díez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomater., 2018, 68, 261 |
37. | M. E. Peralta, S. A. Jadhav, G. Magnacca, D. Scalarone, D. O. Mártire, M. E. Parolo, L. Carlos, J. Colloid Interf. Sci., 2019, 544, 198 |
38. | S. Laksee, K. Sansanaphongpricha, S. Puthong, N. Sangphech, T. Palaga, N. Muangsin, Int. J. Biol. Macromol., 2020, 162, 561 |
39. | M. Huang, S. Zhang, S. Lü, T. Qi, J. Yan, C. Gao, M. Liu, T. Li, Y. Ji, J. Biomed. Mater. Res. A, 2019, 107, 1824 |
40. | S. Mehta, A. Suresh, Y. Nayak, R. Narayan, U. Y. Nayak, Coord. Chem. Rev., 2022, 460, 214482 |
41. | P. Nadrah, F. Porta, O. Planinsek, A. Kros, M. Gaberscek, Phys. Chem. Chem. Phys., 2013, 15, 10740 |
42. | X. Tao, Y. J. Yang, S. Liu, Y. Z. Zheng, J. Fu, J. F. Chen, Acta Biomater., 2013, 9, 6431 |
43. | A. Esmaeili, S. N. Mousavi, Life Sci., 2017, 186, 43 |
44. | J. Lee, H. Kim, C. Kim, Macromol. Res., 2016, 24, 478 |
45. | X. Xu, S. Lü, C. Gao, X. Wang, X. Bai, N. Gao, M. Liu, Chem. Eng. J., 2015, 266, 171 |
46. | X. Xu, S. Lü, C. Gao, X. Bai, C. Feng, N. Gao, M. Liu, Mater. Design, 2015, 88, 1127 |
47. | V. Weiss, C. Argyo, A. A. Torrano, C. Strobel, S. A. Mackowiak, A. Schmidt, S. Datz, T. Gatzenmeier, I. Hilger, C. Bräuchle, T. Bein, Microporous Mesoporous Mater., 2016, 227, 242 |
48. | Q. Zhang, L. Wang, Y. Jiang, W. Gao, Y. Wang, X. Yang, X. Yang, Z. Liu, Adv. Mater. Interfaces, 2017, 4, 1701166 |
49. | M. Esmaeilpour, A. Sardarian, J. Javidi, Catal. Sci. Technol., 2016, 6, 4005 |
50. | W. Xu, Y. Wu, H. Yi, L. Bai, Y. Chai, R. Yuan, Chem. Commun., 2014, 50, 1451 |
51. | E. A. Karakanov, A. V. Zolotukhina, A. O. Ivanov, A. L. Maximov, ChemistryOpen, 2019, 8, 358 |
52. | R. J. Kalbasi, F. Zamani, RSC Adv., 2014, 4, 7444 |
53. | A. L. Maximov, A. V. Zolotukhina, A. A. Mamedli, L. A. Kulikov, E. A. Karakhanov, ChemCatChem, 2018, 10, 222 |
54. | B. Hayati, A. Maleki, F. Najafi, H. Daraei, F. Gharibi, G. McKay, J. Mol. Liq., 2017, 237, 428 |
55. | Y. Lee, S. Zhang, K. Yu, J. Choi, W. Ahn, Chem. Eng. J., 2019, 378, 122133 |
56. | M. M. Sanagi, M. H. Chong, S. Endud, W. A. Wan Ibrahim, I. Ali, Microporous Mesoporous Mater., 2015, 213, 68 |
57. | S. Yoo, S. Yeu, R. L. Sherman, E. E. Simanek, D. F. Shantz, D. M. Ford, J. Membrane Sci., 2009, 334, 16 |
58. | T. Fernandes, A. L. Daniel-da-Silva, T. Trindade, Coord. Chem. Rev., 2022, 460, 214483 |
59. | J. Yu, H. Zhao, L. Ye, H. Yang, S. Ku, N. Yang, N. Xiao, J. Mater. Chem., 2009, 19, 1265 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic of the synthetic methods and applications of dendrimer modified mesoporous nanoparticles[6-9, 16].
Schematics of the combination of dendrimers and mesoporous nanoparticles by introducing a linking agent. (a) Isocyanate-modified alkoxysilane reacted with polypropylene imine dendrimer[16]. Copyright 2009, The Royal Society of Chemistry. (b) PAMAM-Al2O3 NTs were synthesized using GPTMS as a coupling agent[30]. Copyright 2016, John Wiley and Sons.
Schematics of linking dendrimers and mesoporous nanoparticles through click reactions. The azide-modified mesoporous silicon material and the alkynyl-modified dendrimer were connected by the CuAAC reaction[32]. Copyright 2016, ACS publications.
Schematics of the formation of DMMNPs through the alternation of Michael's addition reaction and amidation reaction. (a) Using the alternating reaction of methyl methacrylate and ethylenediamine to grow dendrimers of different generations on mesoporous silica nanomaterials[33]. Copyright 2020, Elsevier. (b) The growth process of dendrimers of different generations[34]. Copyright 2019, Elsevier.
Schematics of a new type of photodynamic drug delivery system. (a) Schematic demonstration of the preparation and the photodynamic effect on cancer cells of GA-G3-PHSNPs modified with photosensitizer AlPcS4. (b) Viability of MCF-7 tumor cells incubated with AlPcS4-GA-G3-PHSNPs in darkness or with light activation. (c) Electron spin-resonance signal of 1O2 of generated by AlPcS4-GA-G3-PHSNPs. (d) Detection of 1O2 generated by AlPcS4-GA-G3-PHSNPs under photoactivation over different time by measurements of the absorbance of 9,10-anthracenediyl-bis(methylene)-dimalonic acid (ABDA). Inset showing absorbance changes of ABDA caused by 1O2 oxidation plotted against radiation time in the absence (black) and presence (red) of photosensitive GA-G3-PHSNPs[42]. Copyright 2013, Elsevier.
Schematics of the grafting of three different types of amino-terminated dendrimers to different types of porous nano-silica for CO2 capture. (a) The structures of the three types of bifunctional dendrimers. (b) Efficiency of CO2 capture, relative to the number of N active per gram of solid. The pressure axis represents the pressure of CO2 in mixtures of CO2/He. (c) Efficiency of CO2 capture by the five amine-functionalized samples[9]. Copyright 2016, John Wiley and Sons.