Citation: | Shuo-Hang Zheng, Xiao-Tong Wang, Zhen-Yi Gu, Jin-Zhi Guo, Xing-Long Wu, et al. Advances and Challenges on Recycling the Electrode and Electrolyte Materials in Spent Lithium-Ion Batteries. Materials Lab 2022, 1, 220036. doi: 10.54227/mlab.20220036 |
Lithium-ion batteries (LIBs), as the advanced power batteries with comprehensive performance, have widely used in electric vehicles (EVs), military equipment, aerospace, consumer electronics, and other fields. With the surge in demand for LIBs, the number of spent LIBs has increased rapidly. However, if the spent LIBs just are simply landfilled, the hazardous components contained in them such as heavy metals and organic electrolytes will pollute the environment, and ultimately threaten human health. In addition, some valuable components will be wasted by landfill, especially high-value metal elements contained in cathode. Thus, the recycling of spent LIBs is a "two birds with one stone" strategy which is not only beneficial to environmental protection but also has high economic value. Accordingly, great efforts have been made to develop efficient and cost-effective recycling processes for spent LIBs recovery. In line with the recycling process, this review first presents a series of pretreatment progresses (disassembling, inactivation, dismantling, and separation) and discusses the problems and challenges involved (automation, environmental protection, and cost, etc.). Second, we summarize and discuss the current recovery and regeneration technologies for cathode materials, including pyrometallurgy, hydrometallurgy and electrochemistry. In addition, advances in the recovery of anode and electrolyte are also introduced. Finally, based on the current state of recycling, we cautiously make some suggestions and prospects for the future recycling of spent LIBs, with a view to providing more ideas for the recycling of used LIBs.
1. | Z. Liang, C. Cai, G. Peng, J. Hu, H. Hou, B. Liu, S. Liang, K. Xiao, S. Yuan, J. Yang, ACS Sustainable Chemistry & Engineering, 2021, 9, 5750 |
2. | M. C. Fan, Y. Zhao, Y. Q. Kang, J. Wozny, Z. Liang, J. X. Wang, G. M. Zhou, B. H. Li, N. Tavajohi, F. Y. Kang, Rare Metals, 2022, 41, 1595 |
3. | Y. Tang, X. Qu, B. Zhang, Y. Zhao, H. Xie, J. Zhao, Z. Ning, P. Xing, H. Yin, Journal of Cleaner Production, 2021, 279, 123633 |
4. | M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, Y. Wang, Joule, 2019, 3, 2622 |
5. | X. Zheng, Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, Z. Sun, Engineering, 2018, 4, 361 |
6. | J. Piątek, S. Afyon, T. M. Budnyak, S. Budnyk, M. H. Sipponen, A. Slabon, Advanced Energy Materials, 2021, 11, 2003456 |
7. | U.S. Geological Survey, Mineral Commodity Summaries 2021, https://pubs.er.usgs.gov/publication/mcs2021, February 2021. |
8. | M. Choux, E. Marti Bigorra, I. Tyapin, Metals, 2021, 11, 387 |
9. | K. Wegener, W. H. Chen, F. Dietrich, K. Dröder, S. Kara, Procedia CIRP, 2015, 29, 716 |
10. | C. Herrmann, A. Raatz, S. Andrew, J. Schmitt, Advanced Materials Research, 2014, 907, 391 |
11. | L. Yun, D. Linh, L. Shui, X. Peng, A. Garg, M. L. P. Le, S. Asghari, J. Sandoval, Resources, Conservation and Recycling, 2018, 136, 198 |
12. | J. Zhang, B. Li, A. Garg, Y. Liu, International Journal of Energy Research, 2018, 42, 3390 |
13. | L. P. Yao, Q. Zeng, T. Qi, J. Li, Journal of Cleaner Production, 2020, 245, 118820 |
14. | H. Nie, L. Xu, D. Song, J. Song, X. Shi, X. Wang, L. Zhang, Z. Yuan, Green Chemistry, 2015, 17, 1276 |
15. | J. Nan, D. Han, X. Zuo, Journal of Power Sources, 2005, 152, 278 |
16. | T. Zhang, Y. He, L. Ge, R. Fu, X. Zhang, Y. Huang, Journal of Power Sources, 2013, 240, 766 |
17. | Y. He, T. Zhang, F. Wang, G. Zhang, W. Zhang, J. Wang, Journal of Cleaner Production, 2017, 143, 319 |
18. | R. Qiu, Z. Huang, J. Zheng, Q. Song, J. Ruan, Y. Tang, R. Qiu, Journal of Cleaner Production, 2021, 279, 123230 |
19. | S. Blankemeyer, D. Wiens, T. Wiese, A. Raatz, S. Kara, Procedia CIRP, 2021, 98, 559 |
20. | D. Yu, Z. Huang, B. Makuza, X. Guo, Q. Tian, Minerals Engineering, 2021, 173, 107218 |
21. | M. Lu, H. N. Zhang, B. C. Wang, X. D. Zheng, C. S. Dai, International Journal of Electrochemical Science, 2013, 8, 8201 |
22. | G. Zhang, Y. He, Y. Feng, H. Wang, X. Zhu, ACS Sustainable Chemistry & Engineering, 2018, 6, 10896 |
23. | G. P. Nayaka, Y. Zhang, P. Dong, D. Wang, K. V. Pai, J. Manjanna, G. Santhosh, J. Duan, Z. Zhou, J. Xiao, Waste Management, 2018, 78, 51 |
24. | L. Yang, G. Xi, Y. Xi, Ceramics International, 2015, 41, 11498 |
25. | Y. Xu, Y. Dong, X. Han, X. Wang, Y. Wang, L. Jiao, H. Yuan, ACS Sustainable Chemistry & Engineering, 2015, 3, 2435 |
26. | X. Zhou, W. Z. He, G. M. Li, X. J. Zhang, J. W. Huang, S. G. Zhu, iCBBE, Chengdu, China, June 2010. |
27. | Y. Bai, R. Essehli, C. J. Jafta, K. M. Livingston, I. Belharouak, ACS Sustainable Chemistry & Engineering, 2021, 9, 6048 |
28. | M. Wang, Q. Tan, L. Liu, J. Li, Journal of Hazardous Materials, 2019, 380, 120846 |
29. | X. Chen, S. Li, Y. Wang, Y. Jiang, X. Tan, W. Han, S. Wang, Waste Management, 2021, 136, 67 |
30. | J. Yu, Y. He, Z. Ge, H. Li, W. Xie, S. Wang, Separation and Purification Technology, 2018, 190, 45 |
31. | J. Yu, Y. He, H. Li, W. Xie, T. Zhang, Powder Technology, 2017, 315, 139 |
32. | E. Kunugita, J. H. Kim, I. Komasawa, Kagaku Kogaku Ronbunshu, 1989, 15, 857 |
33. | P. Zhang, T. Yokoyama, O. Itabashi, T. M. Suzuki, K. Inoue, Hydrometallurgy, 1998, 47, 259 |
34. | C. K. Lee, N. H. Kim, Journal of the Korean Institute of Resources Recycling, 2001, 10, 9 |
35. | L. Li, J. Ge, F. Wu, R. Chen, S. Chen, B. Wu, Journal of Hazardous Materials, 2010, 176, 288 |
36. | D. Mishra, D. J. Kim, D. E. Ralph, J. G. Ahn, Y. H. Rhee, Waste Management, 2008, 28, 333 |
37. | H. Ku, Y. Jung, M. Jo, S. Park, S. Kim, D. Yang, K. Rhee, E.-M. An, J. Sohn, K. Kwon, Journal of Hazardous Materials, 2016, 313, 138 |
38. | K. Liu, F. S. Zhang, Journal of Hazardous Materials, 2016, 316, 19 |
39. | M. K. Tran, M. T. F. Rodrigues, K. Kato, G. Babu, P. M. Ajayan, Nature Energy, 2019, 4, 339 |
40. | W. H. Yuan, D. F. Qiu, C. Y. Wang, Nonferrous Metals (Extractive Metallurgy), 2007, 5−7, 26 |
41. | J. Kondás, J. Jandová, M. Nemeckova, Hydrometallurgy, 2006, 84, 247 |
42. | X. Jie, C. Wang, D. Li, F. Yin, Y. Chen, Y. Yang, The Chinese Journal of Process Engineering, 2011, 11, 249 |
43. | J. Li, G. Wang, Z. Xu, Journal of Hazardous Materials, 2016, 302, 97 |
44. | E. Fan, L. Li, J. Lin, J. Wu, J. Yang, F. Wu, R. Chen, ACS Sustainable Chemistry & Engineering, 2019, 7, 16144 |
45. | B. Makuza, Q. Tian, X. Guo, K. Chattopadhyay, D. Yu, Journal of Power Sources, 2021, 491, 229622 |
46. | X. Hu, E. Mousa, Y. Tian, G. Ye, Journal of Power Sources, 2021, 483, 228936 |
47. | H. Dang, B. Wang, Z. Chang, X. Wu, J. Feng, H. Zhou, W. Li, C. Sun, ACS Sustainable Chemistry & Engineering, 2018, 6, 13160 |
48. | E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, F. Wu, Chemical Reviews, 2020, 120, 7020 |
49. | J. Mao, J. Li, Z. Xu, Journal of Cleaner Production, 2018, 205, 923 |
50. | M. Joulié, R. Laucournet, E. Billy, Journal of Power Sources, 2014, 247, 551 |
51. | R. C. Wang, Y. C. Lin, S. H. Wu, Hydrometallurgy, 2009, 99, 194 |
52. | S. P. Barik, G. Prabaharan, L. Kumar, Journal of Cleaner Production, 2017, 147, 37 |
53. | L. Chen, X. Tang, Y. Zhang, L. Li, Z. Zeng, Y. Zhang, Hydrometallurgy, 2011, 108, 80 |
54. | J. Kang, G. Senanayake, J. Sohn, S. M. Shin, Hydrometallurgy, 2010, 100, 168 |
55. | K. H. Chan, J. Anawati, M. Malik, G. Azimi, ACS Sustainable Chemistry & Engineering, 2021, 9, 4398 |
56. | C. K. Lee, K.-I. Rhee, Journal of Power Sources, 2002, 109, 17 |
57. | J. Guan, Y. Li, Y. Guo, R. Su, G. Gao, H. Song, H. Yuan, B. Liang, Z. Guo, ACS Sustainable Chemistry & Engineering, 2017, 5, 1026 |
58. | J. Zhao, B. Zhang, H. Xie, J. Qu, X. Qu, P. Xing, H. Yin, Environmental Research, 2020, 181, 108803 |
59. | F. Pagnanelli, E. Moscardini, G. Granata, S. Cerbelli, L. Agosta, A. Fieramosca, L. Toro, Journal of Industrial and Engineering Chemistry, 2014, 20, 3201 |
60. | X. Chen, B. Fan, L. Xu, T. Zhou, J. Kong, Journal of Cleaner Production, 2016, 112, 3562 |
61. | P. Meshram, B. D. Pandey, T. R. Mankhand, Chemical Engineering Journal, 2015, 281, 418 |
62. | Y. Ma, X. Zhou, J. Tang, X. Liu, H. Gan, J. Yang, Journal of Hazardous Materials, 2021, 417, 126032 |
63. | Z. Wu, T. Soh, J. J. Chan, S. Meng, D. Meyer, M. Srinivasan, C. Y. Tay, Environmental Science & Technology, 2020, 54, 9681 |
64. | Y. Liu, W. Lv, X. Zheng, D. Ruan, Y. Yang, H. Cao, Z. Sun, ACS Sustainable Chemistry & Engineering, 2021, 9, 3183 |
65. | X. Zeng, J. Li, B. Shen, Journal of Hazardous Materials, 2015, 295, 112 |
66. | S. Anwani, R. Methekar, V. Ramadesigan, Hydrometallurgy, 2020, 197, 105430 |
67. | L. Li, J. Lu, L. Zhai, X. Zhang, L. Curtiss, Y. Jin, F. Wu, R. Chen, K. Amine, CSEE Journal of Power and Energy Systems, 2018, 4, 219 |
68. | M. Yu, Z. Zhang, F. Xue, B. Yang, G. Guo, J. Qiu, Separation and Purification Technology, 2019, 215, 398 |
69. | I. L. Santana, T. F. M. Moreira, M. F. F. Lelis, M. B. J. G. Freitas, Materials Chemistry and Physics, 2017, 190, 38 |
70. | L. Li, J. Lu, Y. Ren, X. X. Zhang, R. J. Chen, F. Wu, K. Amine, Journal of Power Sources, 2012, 218, 21 |
71. | J. Lie, J. C. Liu, Separation and Purification Technology, 2021, 266, 118458 |
72. | S. Refly, O. Floweri, T. R. Mayangsari, A. Sumboja, S. P. Santosa, T. Ogi, F. Iskandar, ACS Sustainable Chemistry & Engineering, 2020, 8, 16104 |
73. | P. Ning, Q. Meng, P. Dong, J. Duan, M. Xu, Y. Lin, Y. Zhang, Waste Management, 2020, 103, 52 |
74. | C. Sun, L. Xu, X. Chen, T. Qiu, T. Zhou, Waste Management & Research, 2018, 36, 113 |
75. | S. Natarajan, A. B. Boricha, H. C. Bajaj, Waste Management, 2018, 77, 455 |
76. | H. Setiawan, H. T. B. M. Petrus, I. Perdana, International Journal of Minerals, Metallurgy, and Materials, 2019, 26, 98 |
77. | J. Kumar, X. Shen, B. Li, H. Liu, J. Zhao, Waste Management, 2020, 113, 32 |
78. | H. Wang, K. Huang, Y. Zhang, X. Chen, W. Jin, S. Zheng, Y. Zhang, P. Li, ACS Sustainable Chemistry & Engineering, 2017, 5, 11489 |
79. | D. Li, B. Zhang, X. Ou, J. Zhang, K. Meng, G. Ji, P. Li, J. Xu, Chinese Chemical Letters, 2021, 32, 2333 |
80. | W. Lv, Z. Wang, H. Cao, X. Zheng, W. Jin, Y. Zhang, Z. Sun, Waste Management, 2018, 79, 545 |
81. | Y. Chen, N. Liu, F. Hu, L. Ye, Y. Xi, S. Yang, Waste Management, 2018, 75, 469 |
82. | C. Wang, S. Wang, F. Yan, Z. Zhang, X. Shen, Z. Zhang, Waste Management, 2020, 114, 253 |
83. | M. H. Morcali, International Journal of Minerals, Metallurgy, and Materials, 2015, 22, 674 |
84. | J. Jegan Roy, M. Srinivasan, B. Cao, ACS Sustainable Chemistry & Engineering, 2021, 9, 3060 |
85. | N. Bahaloo Horeh, S. M. Mousavi, M. Baniasadi, Journal of Cleaner Production, 2018, 197, 1546 |
86. | M. Esmaeili, S. O. Rastegar, R. Beigzadeh, T. Gu, Chemosphere, 2020, 254, 126670 |
87. | M. J. Roldán Ruiz, M. L. Ferrer, M. C. Gutiérrez, F. d. Monte, ACS Sustainable Chemistry & Engineering, 2020, 8, 5437 |
88. | M. M. Wang, C. C. Zhang, F. S. Zhang, Waste Management, 2017, 67, 232 |
89. | H. Zheng, T. Dong, Y. Sha, D. Jiang, H. Zhang, S. Zhang, ACS Sustainable Chemistry & Engineering, 2021, 9, 7022 |
90. | Y. Huang, G. Han, J. Liu, W. Chai, W. Wang, S. Yang, S. Su, Journal of Power Sources, 2016, 325, 555 |
91. | W. Lv, D. Ruan, X. Zheng, L. Li, H. Cao, Z. Wang, Y. Zhang, Z. Sun, Chemical Engineering Journal, 2021, 421, 129908 |
92. | J. M. Zhao, X. Y. Shen, F. L. Deng, F. C. Wang, Y. Wu, H. Z. Liu, Separation and Purification Technology, 2011, 78, 345 |
93. | A. A. Nayl, M. M. Hamed, S. E. Rizk, Journal of the Taiwan Institute of Chemical Engineers, 2015, 55, 119 |
94. | Y. Yang, S. Lei, S. Song, W. Sun, L. Wang, Waste Management, 2020, 102, 131 |
95. | J. Hu, J. Zhang, H. Li, Y. Chen, C. Wang, Journal of Power Sources, 2017, 351, 192 |
96. | T. Huang, L. Liu, S. Zhang, Hydrometallurgy, 2019, 188, 101 |
97. | V. N. H. Nguyen, M. S. Lee, Physicochemical Problems of Mineral Processing, 2020, 56, 599 |
98. | Y. Yang, S. Xu, Y. He, Waste Management, 2017, 64, 219 |
99. | Y. Song, Z. Zhao, L. He, Separation and Purification Technology, 2020, 249, 117161 |
100. | P. K. Choubey, O. S. Dinkar, R. Panda, A. Kumari, M. K. Jha, D. D. Pathak, Waste Management, 2021, 121, 452 |
101. | Y. Yang, F. Liu, S. Song, H. Tang, S. Ding, W. Sun, S. Lei, S. Xu, Journal of Environmental Chemical Engineering, 2020, 8, 104358 |
102. | F. Wang, R. Sun, J. Xu, Z. Chen, M. Kang, RSC Advances, 2016, 6, 85303 |
103. | G. Cai, K. Y. Fung, K. M. Ng, C. Wibowo, Industrial & Engineering Chemistry Research, 2014, 53, 18245 |
104. | M. Wang, Q. Tan, L. Liu, J. Li, Journal of Cleaner Production, 2021, 279, 123612 |
105. | X. Yang, Y. Zhang, Q. Meng, P. Dong, P. Ning, Q. Li, RSC Advances, 2021, 11, 268 |
106. | X. Chen, Y. Chen, T. Zhou, D. Liu, H. Hu, S. Fan, Waste Management, 2015, 38, 349 |
107. | Q. Jing, J. Zhang, Y. Liu, W. Zhang, Y. Chen, C. Wang, ACS Sustainable Chemistry & Engineering, 2020, 8, 17622 |
108. | Z. Y. Gu, J. Z. Guo, X. X. Zhao, X. T. Wang, D. Xie, Z. H. Sun, C. D. Zhao, H. J. Liang, W. H. Li, X. L. Wu, InfoMat, 2021, 3, 694 |
109. | H. Gao, Q. Yan, P. Xu, H. Liu, M. Li, P. Liu, J. Luo, Z. Chen, ACS Applied Materials & Interfaces, 2020, 12, 51546 |
110. | X. Fan, C. Tan, Y. Li, Z. Chen, Y. Li, Y. Huang, Q. Pan, F. Zheng, H. Wang, Q. Li, Journal of Hazardous Materials, 2021, 410, 124610 |
111. | X. Meng, J. Hao, H. Cao, X. Lin, P. Ning, X. Zheng, J. Chang, X. Zhang, B. Wang, Z. Sun, Waste Management, 2019, 84, 54 |
112. | M. Fan, X. Chang, Y.-J. Guo, W. P. Chen, Y.-X. Yin, X. Yang, Q. Meng, L.-J. Wan, Y. G. Guo, Energy & Environmental Science, 2021, 14, 1461 |
113. | T. Liu, J. Chen, X. Shen, H. Li, Separation and Purification Technology, 2021, 259, 118088 |
114. | X. Chen, J. Li, D. Kang, T. Zhou, H. Ma, Green Chemistry, 2019, 21, 6342 |
115. | X. Fan, C. Song, X. Lu, Y. Shi, S. Yang, F. Zheng, Y. Huang, K. Liu, H. Wang, Q. Li, Journal of Alloys and Compounds, 2021, 863, 158775 |
116. | Y. Yang, J. Z. Guo, Z. Y. Gu, Z. H. Sun, B. H. Hou, A. B. Yang, Q. L. Ning, W. H. Li, X. L. Wu, ACS Sustainable Chemistry & Engineering, 2019, 7, 12014 |
117. | Z. Zhang, M. Yu, B. Yang, C. Jin, G. Guo, J. Qiu, Materials Research Bulletin, 2020, 126, 110855 |
118. | L. Li, E. Fan, Y. Guan, X. Zhang, Q. Xue, L. Wei, F. Wu, R. Chen, ACS Sustainable Chemistry & Engineering, 2017, 5, 5224 |
119. | T. Wang, H. Luo, Y. Bai, J. Li, I. Belharouak, S. Dai, Advanced Energy Materials, 2020, 10, 2001204 |
120. | J. Yang, W. Wang, H. Yang, D. Wang, Green Chemistry, 2020, 22, 6489 |
121. | Z. Zheng, M. Chen, Q. Wang, Y. Zhang, X. Ma, C. Shen, D. Xu, J. Liu, Y. Liu, P. Gionet, I. O’Connor, L. Pinnell, J. Wang, E. Gratz, R. Arsenault, Y. Wang, ACS Sustainable Chemistry & Engineering, 2018, 6, 13977 |
122. | G. Qian, Z. Li, Y. Wang, X. Xie, Y. He, J. Li, Y. Zhu, S. Xie, Z. Cheng, H. Che, Y. Shen, L. Chen, X. Huang, P. Pianetta, Z. F. Ma, Y. Liu, L. Li, Cell Reports Physical Science, 2022, 3, 100741 |
123. | J. Xiao, J. Li, Z. Xu, Environmental Science & Technology, 2020, 54, 9 |
124. | K. Rambau, N. M. Musyoka, N. Palaniyandy, N. Manyala, Journal of The Electrochemical Society, 2021, 168, 010527 |
125. | R. Sun, Z. Qin, Z. Li, H. Fan, S. Lu, Dalton Transactions, 2020, 49, 14237 |
126. | H. Zhu, Z. Li, F. Xu, Z. Qin, R. Sun, C. Wang, S. Lu, Y. Zhang, H. Fan, Journal of Colloid and Interface Science, 2022, 611, 718 |
127. | Q. Meng, M. Guan, Y. Huang, L. Li, F. Wu, R. Chen, InfoMat, 2022, e12313 |
128. | X. Min, M. Guo, L. Liu, L. Li, J. Gu, J. Liang, C. Chen, K. Li, J. Jia, T. Sun, Journal of Hazardous Materials, 2021, 406, 124743 |
129. | Z. Li, R. Sun, Z. Qin, X. Liu, C. Wang, S. Lu, Y. Zhang, H. Fan, Materials Chemistry Frontiers, 2021, 5, 7540 |
130. | T. Liu, S. Cai, G. Zhao, Z. Gao, S. Liu, H. Li, L. Chen, M. Li, X. Yang, H. Guo, Journal of Energy Chemistry, 2021, 62, 440 |
131. | B. Niu, J. Xiao, Z. Xu, Journal of Materials Chemistry A, 2021, 9, 472 |
132. | W. Yin, Z. Wu, W. Tian, Y. Chen, W. Xiang, G. Feng, Y. Li, C. Wu, C. Xu, C. Bai, B. Zhong, X. Wang, J. Zhang, F. He, A. A. Alshehri, X. Guo, Journal of Materials Chemistry A, 2019, 7, 17867 |
133. | R. Liu, W. Yin, Y. Chen, B. Zhong, G. Wang, Y. Liu, Y. Song, Z. Wu, L. Yang, X. Guo, Industrial & Engineering Chemistry Research, 2020, 59, 17911 |
134. | H. Huang, C. Liu, Z. Sun, Journal of Hazardous Materials, 2022, 435, 128974 |
135. | J. Yu, M. Lin, Q. Tan, J. Li, Journal of Hazardous Materials, 2021, 401, 123715 |
136. | H. Wang, Y. Huang, C. Huang, X. Wang, K. Wang, H. Chen, S. Liu, Y. Wu, K. Xu, W. Li, Electrochimica Acta, 2019, 313, 423 |
137. | D. Ruan, K. Zou, K. Du, F. Wang, L. Wu, Z. Zhang, X. Wu, G. Hu, ChemCatChem, 2021, 13, 2025 |
138. | K. D. Du, Y. F. Meng, X. X. Zhao, X. T. Wang, X. X. Luo, W. Zhang, X. L. Wu, Science China Materials, 2022, 65, 637 |
139. | C. Yi, L. Zhou, X. Wu, W. Sun, L. Yi, Y. Yang, Chinese Journal of Chemical Engineering, 2021, 39, 37 |
140. | S. Natarajan, V. Aravindan, Advanced Energy Materials, 2020, 10, 2002238 |
141. | N. Cao, Y. Zhang, L. Chen, W. Chu, Y. Huang, Y. Jia, M. Wang, Journal of Power Sources, 2021, 483, 229163 |
142. | B. Li, C. Wu, J. Xu, D. Hu, T. Zhang, X. Fang, J. Tong, Materials Chemistry and Physics, 2020, 241, 122397 |
143. | J. Zhang, Y. Lei, Z. Lin, P. Xie, H. Lu, J. Xu, Chemical Engineering Journal, 2022, 436, 135011 |
144. | H.-J. Liang, B.-H. Hou, W.-H. Li, Q.-L. Ning, X. Yang, Z.-Y. Gu, X.-J. Nie, G. Wang, X.-L. Wu, Energy & Environmental Science, 2019, 12, 3575 |
145. | Z. Xiao, L. Gao, S. Su, D. Li, L. Cao, L. Ye, B. Zhang, L. Ming, X. Ou, Materials Today Energy, 2021, 21, 100821 |
146. | L. Xu, X. Zhang, R. Chen, F. Wu, L. Li, Small, 2022, 18, 2105897 |
147. | X. Liu, Y. Niu, R. Cao, X. Chen, H. Shang, H. Song, Acta Physico-Chimica Sinica, 2022, 38, 2012062 |
148. | J. Yang, E. Fan, J. Lin, F. Arshad, X. Zhang, H. Wang, F. Wu, R. Chen, L. Li, ACS Applied Energy Materials, 2021, 4, 6261 |
149. | S. Jung, D. Kwon, S. Park, K. Kwon, Y. F. Tsang, E. E. Kwon, Journal of Co2 Utilization, 2021, 50, 101591 |
150. | Y. Liu, D. Mu, R. Li, Q. Ma, R. Zheng, C. Dai, Journal of Physical Chemistry C, 2017, 121, 4181 |
151. | J. Neumann, M. Petranikova, M. Meeus, J. D. Gamarra, R. Younesi, M. Winter, S. Nowak, Advanced Energy Materials, 2022, 12, 2102917 |
152. | Y. Fu, J. Schuster, M. Petranikova, B. Ebin, Resources, Conservation and Recycling, 2021, 172, 105666 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Distribution of mining production for LIB materials in 2020.[7]
Flowchart of the typical processes for spent LIBs recovery.
Flowchart of the pretreatment for spent LIBs: Disassembling,[8-12] Inactivation,[13-15] Dismantling,[16] and Separation.[17, 18] Copyright 2021, MDPI.[8] Copyright 2015, Elsevier.[9] Copyright 2014, Trans Tech Publications.[10] Copyright 2018, Elsevier.[11] Copyright 2018, John Wiley & Sons, Ltd.[12] Copyright 2020, Elsevier.[13] Copyright 2020, Elsevier.[16] Copyright 2021, Elsevier.[18]
Equipment for different disassembling processes: (a) Pneumatic tool for manual disassembling process.[12] Copyright 2018, John Wiley & Sons, Ltd. (b) Electric screwdriver for semi-automatic disassembling.[9] Copyright 2015, Elsevier. (c) Concept for a disassembly system.[19] Copyright 2021, Elsevier. (d) Task planner for automatic process.[8] Copyright 2021, MDPI.
Development of hydrometallurgical and pyrometallurgical processes for spent LIBs recovery. Hydrometallurgical process includes inorganic acid (H2SO4,[32] HCl[33]), reducing agent,[34] organic acid,[35] bioleaching,[36] alkali,[37] subcritical water,[38] and DES[39]. Pyrometallurgical process includes smelting[40] and roasting[41] (sulfation roasting,[42] graphite,[43] and molten salt[44]). Copyright 1989, The Society of Chemical Engineers, Japan.[32] Copyright 1998, Elsevier.[33] Copyright 2001, The Korean Institute of Resources Recycling.[34] Copyright 2010, Elsevier.[35] Copyright 2008, Elsevier.[36] Copyright 2016, Elsevier.[37, 38] Copyright 2019, Springer Nature.[39] Copyright 2007, CNKI.[40] Copyright 2006, Elsevier.[41] Copyright 2011, CNKI.[42] Copyright 2016, Elsevier.[43] Copyright 2019, American Chemical Society.[44]
Illustration of the different separation process: (a) Solvent extraction.[89] Copyright 2021, American Chemical Society. (b) Chemical precipitation.[90] Copyright 2016, Elsevier. (c) Electrolysis.[91] Copyright 2021, Elsevier.
Flowchart of regeneration process for cathode materials: (a) Hydrothermal method.[107] Copyright 2020, American Chemical Society. (b) Solid phase method.[110] Copyright 2021, Elsevier. (c) Co-precipitation.[98] Copyright 2017, Elsevier. (d) Sol-gel method.[118] Copyright 2017, American Chemical Society.
(a) The flowchart of the 3D sea-urchin-like CoN-Gr-2 preparation process from spent LIBs, and the enhanced water splitting performance of CoN-Gr-2.[130] Copyright 2021, Elsevier. (b) Schematic diagram of modified separator by spent LiCoO2 cathode.[133] Copyright 2020, American Chemical Society (c) Using of spent LiCoO2 to regulate the π-conjugated structure of g-C3N4 and the mechanism of synergistic effect of Li-Cl-Co.[131] Copyright 2021, The Royal Society of Chemistry.
(a) Preparation of 2D graphene oxide by graphite in spent LIBs.[135] Copyright 2021, Elsevier. (b) Regeneration of the anode.[136] Copyright 2019, Elsevier. (c) Preparation of ORR catalyst by he spent graphite anode.[137] Copyright 2021, Wiley-VCH GmbH. (d) Spent graphite anode used as electrode materials for dual-ion battery.[138] Copyright 2022, Springer Nature.
(a) Thermolysis of battery electrolyte produced syngas.[149] Copyright 2021, Elsevier. (b) Reclaimed electrolytes from spent LIBs.[150] Copyright 2017, American Chemical Society.