Citation: | Yilong Dai, Zengsheng Ma, Youlan Zou, Yaru Liang. Challenges and Applications of In Situ TEM for Sodium-Ion Batteries. Materials Lab 2022, 1, 220037. doi: 10.54227/mlab.20220037 |
Owning to the fast development and bright prospect in energy storage system of sodium-ion battery, the electrochemical behavior of sodium storage materials has been paid full attention by researchers. The electrochemical reaction of sodium-ion battery materials involves complex evolution procedures of morphology, microstructure and element valence. Due to the limitation of conventional analytical techniques, the sodium electrochemical reaction process and mechanism are not completely clear. In situ transmission electron microscopy (TEM) enables researchers to observe sodium storage materials behave in the electrochemical environment directly, which can provide guidance for the development of sodium-ion battery materials. This review demonstrates the general applicability of in situ TEM for sodium-ion batteries, and the challenges and opportunities are discussed.
1. | J. Li, G. Johnson, S. Zhang, D. Su, Joule, 2019, 3, 4 |
2. | M. Armand, J. M. Tarascon, Nature, 2008, 451, 652 |
3. | J. Deng, C. Bae, A. Denlinger, T. Miller, Joule, 2020, 4, 511 |
4. | B. Dunn, H. Kamath, J.-M. Tarascon, Science, 2011, 334, 928 |
5. | H. Jin, J. Li, Y. Yuan, J. Wang, J. Lu, S. Wang, Adv. Energy Mater., 2018, 8, 1801007 |
6. | Y. Wang, Y. Zhang, H. Cheng, Z. Ni, Y. Wang, G. Xia, X. Li, X. Zeng, Molecules, 2021, 26, 1535 |
7. | H. Pan, Y.-S. Hu, L. Chen, Energ. Environ. Sci., 2013, 6, 2338 |
8. | Y. Liang, W. H. Lai, Z. Miao, S. L. Chou, Small, 2018, 14, 1702514 |
9. | V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-González, T. Rojo, Energ. Environ. Sci., 2012, 5, 5884 |
10. | S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater., 2012, 2, 710 |
11. | J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chemical Society Reviews, 2017, 46, 3529 |
12. | E. Wang, M. Chen, X. Guo, S.-L. Chou, B. Zhong, S.-X. Dou, Small Methods, 2020, 4, 1900163 |
13. | Z. Hu, Q. Liu, S.-L. Chou, S.-X. Dou, Adv. Mater., 2017, 29, 1700606 |
14. | F. Gebert, J. Knott, R. Gorkin, S.-L. Chou, S.-X. Dou, Energy Storage Mater., 2021, 36, 10 |
15. | J. Deng, W.-B. Luo, S.-L. Chou, H.-K. Liu, S.-X. Dou, Adv. Energy Mater., 2018, 8, 1701428 |
16. | M. Chen, S.-L. Chou, S.-X. Dou, Batteries & Supercaps, 2019, 2, 842 |
17. | Y. X. Wang, W. H. Lai, Y. X. Wang, S.-L. Chou, X. Ai, H. Yang, Y. Cao, Angew. Chem. Int. Ed. Engl., 2019, 58, 18324 |
18. | Y. Wu, R. Zeng, J. Nan, D. Shu, Y. Qiu, S.-L. Chou, Adv. Energy Mater., 2017, 7, 1700278 |
19. | Z.-G. Liu, R. Du, X.-X. He, J.-C. Wang, Y. Qiao, L. Li, S.-L. Chou, ChemSusChem, 2021, 14, 3724 |
20. | Y. Li, Y. Yuan, Y. Bai, Y. Liu, Z. Wang, L. Li, F. Wu, K. Amine, C. Wu, J. Lu, Adv. Energy Mater., 2018, 8, 1702781 |
21. | Z. Jian, C. Bommier, L. Luo, Z. Li, W. Wang, C. Wang, P. A. Greaney, X. Ji, Chem. Mater., 2017, 29, 2314 |
22. | Z. Yang, X. H. Liu, X. X. He, W. H. Lai, L. Li, Y. Qiao, S. L. Chou, M. Wu, Adv. Funct. Mater., 2021, 31, 2006457 |
23. | W. Liu, M. Wei, L. Ji, Y. Zhang, Y. Song, J. Liao, L. Zhang, Chemical Physics Letters, 2020, 741, 137061 |
24. | M. B. Vazquez-Santos, P. Tartaj, E. Morales, J. M. Amarilla, Chem. Rec., 2018, 18, 1178 |
25. | X. Li, W. Chen, Q. Qian, H. Huang, Y. Chen, Z. Wang, Q. Chen, J. Yang, J. Li, Y. W. Mai, Adv. Energy Mater., 2021, 11, 2000845 |
26. | Y. Yuan, C. Liu, B. W. Byles, W. Yao, B. Song, M. Cheng, Z. Huang, K. Amine, E. Pomerantseva, R. Shahbazian-Yassar, J. Lu, Joule, 2019, 3, 471 |
27. | T. Hirayama, Y. Aizawa, K. Yamamoto, T. Sato, H. Murata, R. Yoshida, C. A. Fisher, T. Kato, Y. Iriyama, Ultramicroscopy, 2017, 173, 64 |
28. | F. Zhu, M. S. Islam, L. Zhou, Z. Gu, T. Liu, X. Wang, J. Luo, C. W. Nan, Y. Mo, C. Ma, Nature Communications, 2020, 11, 1828 |
29. | H. Wang, F. Wang, Current Opinion in Chemical Engineering, 2016, 13, 170 |
30. | J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, Science, 2010, 330, 1515 |
31. | Z. Yan, Y. Liang, J. Xiao, W. Lai, W. Wang, Q. Xia, Y. Wang, Q. Gu, H. Lu, S. L. Chou, Y. Liu, H. Liu, S. X. Dou, Adv. Mater., 2020, 32, e1906700 |
32. | H. Liu, W.-H. Lai, Y. Liang, X. Liang, Z.-C. Yan, H.-L. Yang, Y.-J. Lei, P. Wei, S. Zhou, Q.-F. Gu, S.-L. Chou, H. K. Liu, S. X. Dou, Y.-X. Wang, J. Mater. Chem. A, 2021, 9, 566 |
33. | H. Shen, Y. Huang, Y. Chang, R. Hao, Z. Ma, K. Wu, P. Du, B. Guo, Y. Lyu, P. Wang, H. Yang, Q. Li, H. Wang, Z. Liu, A. Nie, ACS Appl. Mater. Interfaces, 2020, 12, 17466 |
34. | Y. Yuan, W. Yao, V. Yurkiv, T. Liu, B. Song, F. Mashayek, R. Shahbazian-Yassar, J. Lu, ACS Nano, 2020, 14, 15669 |
35. | Y. Zhu, S. Feng, P. Zhang, M. Guo, Q. Wang, D. Wu, L. Zhang, H. Li, H. Wang, L. Chen, X. Sun, M. Gu, Energy Storage Mater., 2020, 33, 88 |
36. | Q. Liu, Y. Tang, H. Sun, T. Yang, Y. Sun, C. Du, P. Jia, H. Ye, J. Chen, Q. Peng, T. Shen, L. Zhang, J. Huang, ACS Nano, 2020, 14, 13232 |
37. | Z. Zhang, J. Qian, W. Lu, C. H. Chan, S. P. Lau, J.-Y. Dai, Energy Storage Materials, 2018, 15, 91 |
38. | H. Asayesh-Ardakani, W. Yao, Y. Yuan, A. Nie, K. Amine, J. Lu, R. Shahbazian-Yassar, Small Methods, 2017, 1, 1700202 |
39. | S. Lee, Y. Oshima, E. Hosono, H. Zhou, K. Kim, H. Chang, R. Kanno, K. Takayanagi, Microsc. Microanal., 2013, 19, 414 |
40. | K. He, Y. Yuan, W. Yao, K. You, M. Dahbi, J. Alami, K. Amine, R. Shahbazian-Yassar, J. Lu, Angew. Chem. Int. Ed. Engl., 2022, 61, e202113420 |
41. | J. Li, H. Jin, Y. Yuan, H. Lu, C. Su, D. Fan, Y. Li, J. Wang, J. Lu, S. Wang, Nano Energy, 2019, 58, 23 |
42. | Y. Cheng, L. Zhang, Q. Zhang, J. Li, Y. Tang, C. Delmas, T. Zhu, M. Winter, M.-S. Wang, J. Huang, Mater. Today, 2021, 42, 137 |
43. | L. Wheatcroft, D. Özkaya, J. Cookson, B. J. Inkson, Energy Procedia, 2018, 151, 163 |
44. | Y. Yuan, K. Amine, J. Lu, R. Shahbazian-Yassar, Nature Communications, 2017, 8, 15806 |
45. | H.-W. Lee, Y. Li, Y. Cui, Curr. Opin. Chem. Eng., 2016, 12, 37 |
46. | K. He, Y. Yuan, X. Bi, T. Foroozan, J. Lu, R. Shahbazian-Yassar, Microsc. Microanal., 2018, 24, 328 |
47. | D. Lee, H. Park, Y. Ko, H. Park, T. Hyeon, K. Kang, J. Park, J. Am. Chem. Soc., 2019, 141, 8047 |
48. | C. Luo, H. Sun, Z. Jiang, H. Guo, M. Gao, M. Wei, Z. Jiang, H. Zhou, S.-G. Sun, Electrochim. Acta, 2018, 282, 56 |
49. | S. Basak, J. Jansen, Y. Kabiri, H. W. Zandbergen, Ultramicroscopy, 2018, 188, 52 |
50. | X. B. Cheng, R. Zhang, C. Z. Zhao, F. Wei, J. G. Zhang, Q. Zhang, Adv. Sci., 2016, 3, 1500213 |
51. | K. Yamamoto, Y. Iriyama, T. Asaka, T. Hirayama, H. Fujita, C. A. Fisher, K. Nonaka, Y. Sugita, Z. Ogumi, Angew. Chem. Int. Ed. Engl., 2010, 49, 4414 |
52. | J. Zhu, J. Zhao, Y. Xiang, M. Lin, H. Wang, B. Zheng, H. He, Q. Wu, J. Y. Huang, Y. Yang, Chem. Mater., 2020, 32, 4998 |
53. | D. Lin, K. Li, L. Zhou, Compos. Commun., 2021, 25, 100635 |
54. | Z. Shadike, E. Zhao, Y. N. Zhou, X. Yu, Y. Yang, E. Hu, S. Bak, L. Gu, X. Q. Yang, Adv. Energy Mater., 2018, 8, 1702588 |
55. | Q. Xia, Y. Liang, Z. Lin, S. Wang, W. Lai, D. Yuan, Y. Dou, Q. Gu, J. Z. Wang, H. K. Liu, S. X. Dou, S. Fang, S. L. Chou, Adv. Energy Mater., 2020, 10, 2001033 |
56. | J. Liu, Y. Yuan, X. Guo, B. Li, R. Shahbazian-Yassar, D. H. Liu, Z. Chen, K. Amine, J. Lu, L. Yang, Z. Bai, Adv. Energy Mater., 2021, 11, 2100503 |
57. | H. Zheng, Y. Zhu, Ultramicroscopy, 2017, 180, 188 |
58. | A. Nie, L.-y. Gan, Y. Cheng, X. Tao, Y. Yuan, S. Sharifi-Asl, K. He, H. Asayesh-Ardakani, V. Vasiraju, J. Lu, F. Mashayek, R. Klie, S. Vaddiraju, U. Schwingenschlögl, R. Shahbazian-Yassar, Adv. Funct. Mater., 2016, 26, 543 |
59. | M. G. Boebinger, M. Xu, X. Ma, H. Chen, R. R. Unocic, M. T. McDowell, J. Mater. Chem. A, 2017, 5, 11701 |
60. | M. Gu, A. Kushima, Y. Shao, J. G. Zhang, J. Liu, N. D. Browning, J. Li, C. Wang, Nano lett., 2013, 13, 5203 |
61. | Q. Li, J. Wu, J. Xu, V. P. Dravid, J. Mater. Chem. A, 2016, 4, 8669 |
62. | C. Zhang, X. Wang, Q. Liang, X. Liu, Q. Weng, J. Liu, Y. Yang, Z. Dai, K. Ding, Y. Bando, J. Tang, D. Golberg, Nano lett., 2016, 16, 2054 |
63. | Z. Yang, J. Sun, Y. Ni, Z. Zhao, J. Bao, S. Chen, Energy Storage Mater., 2017, 9, 214 |
64. | Q. Liu, Z. Hu, Y. Liang, L. Li, C. Zou, H. Jin, S. Wang, H. Lu, Q. Gu, S. L. Chou, Y. Liu, S. X. Dou, Angew. Chem. Int. Ed. Engl., 2020, 59, 5159 |
65. | D. Chen, L. Peng, Y. Yuan, Y. Zhu, Z. Fang, C. Yan, G. Chen, R. Shahbazian-Yassar, J. Lu, K. Amine, G. Yu, Nano lett., 2017, 17, 3907 |
66. | Q. Pan, Q. Zhang, F. Zheng, Y. Liu, Y. Li, X. Ou, X. Xiong, C. Yang, M. Liu, ACS Nano, 2018, 12, 12578 |
67. | Q. Su, G. Du, J. Zhang, Y. Zhong, B. Xu, Y. Yang, S. Neupane, W. Li, ACS Nano, 2014, 8, 3620 |
68. | X. Xia, Q. Wang, Q. Zhu, J. Xie, J. Wang, D. Zhuang, S. Zhang, G. Cao, X. Zhao, Mater. Today Energy, 2017, 5, 99 |
69. | J. Song, P. Yan, L. Luo, X. Qi, X. Rong, J. Zheng, B. Xiao, S. Feng, C. Wang, Y.-S. Hu, Y. Lin, V. L. Sprenkle, X. Li, Nano Energy, 2017, 40, 504 |
70. | X. Lu, E. R. Adkins, Y. He, L. Zhong, L. Luo, S. X. Mao, C.-M. Wang, B. A. Korgel, Chem. Mater., 2016, 28, 1236 |
71. | Q. Li, H. Liu, Z. Yao, J. Cheng, T. Li, Y. Li, C. Wolverton, J. Wu, V. P. Dravid, ACS Nano, 2016, 10, 8788 |
72. | S. Yao, J. Cui, Z. Lu, Z.-L. Xu, L. Qin, J. Huang, Z. Sadighi, F. Ciucci, J.-K. Kim, Adv. Energy Mater., 2017, 7, 1602149 |
73. | L. Zhang, Y. Wang, D. Xie, Y. Tang, C. Wu, L. Cui, Y. Li, X. Ning, Z. Shan, RSC Adv., 2016, 6, 11441 |
74. | H. Liu, H. Zheng, L. Li, S. Jia, S. Meng, F. Cao, Y. Lv, D. Zhao, J. Wang, Adv. Mater. Interfaces, 2018, 5, 1701255 |
75. | Y. Yuan, L. Ma, K. He, W. Yao, A. Nie, X. Bi, K. Amine, T. Wu, J. Lu, R. Shahbazian-Yassr, Nano Energy, 2016, 19, 382 |
76. | C. Zhu, F. Xu, H. Min, Y. Huang, W. Xia, Y. Wang, Q. Xu, P. Gao, L. Sun, Adv. Funct. Mater., 2017, 27, 1606163 |
77. | J. Cui, S. Yao, Z. Lu, J.-Q. Huang, W. G. Chong, F. Ciucci, J.-K. Kim, Adv. Energy Mater., 2018, 8, 1702488 |
78. | K. He, F. Lin, Y. Zhu, X. Yu, J. Li, R. Lin, D. Nordlund, T. C. Weng, R. M. Richards, X. Q. Yang, M. M. Doeff, E. A. Stach, Y. Mo, H. L. Xin, D. Su, Nano lett., 2015, 15, 5755 |
79. | Q. Li, Z. Yao, J. Wu, S. Mitra, S. Hao, T. S. Sahu, Y. Li, C. Wolverton, V. P. Dravid, Nano Energy, 2017, 38, 342 |
80. | Y. He, M. Gu, H. Xiao, L. Luo, Y. Shao, F. Gao, Y. Du, S. X. Mao, C. Wang, Angew. Chem. Int. Ed. Engl., 2016, 55, 6244 |
81. | K. He, Y. Zhou, P. Gao, L. Wang, Nathalie Pereira, G. G. Amatucci, K.-W. Nam, X.-Q. Yang, Y. Zhu, F. Wang, D. Su, ACS Nano, 2014, 8, 7251 |
82. | T. Erichsen, B. r. Pfeiffer, V. Roddatis, C. A. Volkert, ACS Appl. Energ. Mater., 2020, 3, 5405 |
83. | L. Yang, X. Li, K. Pei, W. You, X. Liu, H. Xia, Y. Wang, R. Che, Adv. Funct. Mater., 2021, 31, 2103971 |
84. | Z. Wang, D. Santhanagopalan, W. Zhang, F. Wang, H. L. Xin, K. He, J. Li, N. Dudney, Y. S. Meng, Nano Lett., 2016, 16, 3760 |
85. | Y. Nomura, K. Yamamoto, T. Hirayama, E. Igaki, K. Saitoh, ACS Energy Lett., 2020, 5, 2098 |
86. | L. W. Peng Gao, Yuyang Zhang, Yuan Huang, Kaihui Liu, ACS Nano, 2015, 9, 11296 |
87. | L. Wang, Z. Xu, W. Wang, X. Bai, J. Am. Chem. Soc., 2014, 136, 6693 |
88. | P. Gao, Y.-Y. Zhang, L. Wang, S. Chen, Y. Huang, X. Ma, K. Liu, D. Yu, Nano Energy, 2017, 32, 302 |
89. | Y. W. Byeon, Y. S. Choi, J. P. Ahn, J. C. Lee, ACS Appl. Mater. Inter., 2018, 10, 41389 |
90. | C.-M. Wang, J. Mater. Res., 20145, 30, 326 |
91. | Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A. L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science, 2017, 358, 506 |
92. | L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang, J. Zhao, B. Wang, T. Chen, Y. Sun, P. Jia, H. Li, L. Geng, J. Chen, H. Ye, Z. Wang, Y. Li, H. Sun, X. Li, Q. Dai, Y. Tang, Q. Peng, T. Shen, S. Zhang, T. Zhu, J. Huang, Nat. Nanotechnol., 2020, 15, 94 |
93. | L. Kovarik, A. Stevens, A. Liyu, N. D. Browning, Appl. Phys. Lett., 2016, 109, 164102 |
94. | A. Stevens, L. Luzi, H. Yang, L. Kovarik, B. L. Mehdi, A. Liyu, M. E. Gehm, N. D. Browning, Appl. Phys. Lett., 2018, 112, 043104 |
95. | T. Dahmen, M. Engstler, C. Pauly, P. Trampert, N. de Jonge, F. Mucklich, P. Slusallek, Sci. Rep., 2016, 6, 25350 |
96. | S. Hwang, Y. Lee, E. Jo, K. Y. Chung, W. Choi, S. M. Kim, W. Chang, ACS Appl. Mater. Inter., 2017, 9, 18883 |
97. | Z. Wang, Y. Tang, L. Zhang, M. Li, Z. Shan, J. Huang, Small, 2020, 16, e2001899 |
98. | Y. Li, Y. Tang, X. Li, W. Tu, L. Zhang, J. Huang, Small, 2021, 17, e2100846 |
99. | B. Wei, X. Lu, F. Voisard, H. Wei, H.-c. Chiu, Y. Ji, X. Han, M. L. Trudeau, K. Zaghib, G. P. Demopoulos, R. Gauvin, ACS Appl. Energ. Mater., 2018, 1, 3180 |
100. | Z. Zhang, J. Cui, B. Wang, H. Jiang, G. Chen, J. Yu, C. Lin, C. Tang, A. Hartmaier, J. Zhang, J. Luo, A. Rosenkranz, N. Jiang, D. Guo, Nanoscale, 2018, 10, 6261 |
101. | J. Cui, Z. Zhang, H. Jiang, D. Liu, L. Zou, X. Guo, Y. Lu, I. P. Parkin, D. Guo, ACS Nano, 2019, 13, 7483 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Examples of in-situ TEM research in sodium-ion electrodes. (a) Schematic of the open-cell in-situ TEM devise, (b) the morphological and structural evolution of the Zn4Sb3 nanowire in the sodiation process[58]. Copyright 2015, Wiley-VCH. (c) ED patterns of the first and the second sodiation–desodiation products to identify the overall reaction mechanism of NiCo2O4 in SIBs[76]. Copyright 2017, Wiley-VCH. (d) tracking of the Na transport in MoS2 and reaction front propagation in real-time[86]. Copyright 2015, American Chemical Society.
Challenges and their potential solutions on open-cell in-situ TEM for sodium-ion electrodes. (a) Schematic of an ideal in-situ electrochemical liquid-cell for battery research. (b) Schematic of the cryo-TEM holder in which the samples immersed in liquid nitrogen and isolated from the environment by a closed shutter. (c) Schematic of surface protection layer covered and protected the sample. (d) Sparsely sampled acquired with 6 pǺ probe and dwell time of 31.35 µs (left) and reconstructed (right) images from CaCO3[93]. Copyright 2016, AIP Publishing.
Examples of some advanced techniques developed for in-situ TEM. (a) Schematic of multi-field hold for in situ TEM studies. (b) Schematic of the air-tight biasing TEM holder.