Citation: | Yueqi Kong, Nashaat Ahmed Gadelhak, Shuimei Chen, Dmitrii Rakov, Ashok Kumar Nanjundan, Chengzhong Yu, Xiaodan Huang. Cathode choices for rechargeable aluminium batteries: the past decade and future[J]. Materials Lab, 2023, 2(2): 220055. doi: 10.54227/mlab.20220055 |
Rechargeable aluminium batteries are a promising alternative battery technology compared to lithium-ion batteries, because of the high theoretical capacity, low cost and high safety of aluminium. The past decade has witnessed the rapid development of rechargeable aluminium battery technology with the focus on exploring high performance cathode materials and investigating their charge storage mechanisms. However, the challenges in the cathode research including inadequate capacity, sluggish reaction kinetics and inferior cycling stability still remain. Various strategies have been attempted to address these challenges to realize the advantages of rechargeable aluminium batteries. The present review aims to collect the comprehensive body of research performed in the literature hitherto to develop interaction/conversion/coordination type cathodes for rechargeable aluminium batteries. Future research directions and prospects in rechargeable aluminium battery field are also proposed.
1. | M. Allen, M. Babiker, Y. Chen and H. C. de Coninck, IPCC Special Report Global Warming of 1.5 °C , Intergovernmental Panel on Climate Change, 2018. |
2. | IEA, Net Zero by 2050, Paris. https://www.iea.org/reports/net-zero-by-2050, May 2021. |
3. | M. Li, J. Lu, Z. Chen and K. Amine, Adv. Mater., 2018, 30, 1800561 |
4. | G. E. Blomgren, J. Electrochem. Soc., 2016, 164, A5019 |
5. | N. Nitta, F. Wu, J. T. Lee and G. Yushin, Mater. Today, 2015, 18, 252 |
6. | V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 2011, 4, 3243 |
7. | R. Sun, S. Dong, F. Xu, Z. Li, C. Wang, S. Lu and H. Fan, Dalton Trans., 2022, 51, 7607 |
8. | X. Guo, W. Zhang, J. Shi, M. Duan, S. Liu, J. Zhang, Y. Liu, S. Xiong and Q. Kong, Nano Res., 2022, 15, 3, 2092 |
9. | Z. Li, Z. Peng, R. Sui, Z. Qin, X. Liu. C. Wang, H. Fan and S. Lu, Chi. J. Chem., 2021, 39, 2599 |
10. | Z. Gu, J. Guo, Z. Sun, X. Zhao, X. Wang, H. Liang, X. Wu and Y. Liu, Cell Rep. Phys. Sci., 2021, 2, 100665 |
11. | Y. Heng, Z. Gu, J. Guo and X. Wu, Acta. Phys. Chim. Sin., 2021, 37, 2005013 |
12. | J. Tu, W.-L. Song, H. Lei, Z. Yu, L.-L. Chen, M. Wang and S. Jiao, Chem. Rev., 2021, 121, 4903 |
13. | E. Faegh, B. Ng, D. Hayman and W. E. Mustain, Nat. Energy, 2021, 6, 21 |
14. | H. Yang, H. Li, J. Li, Z. Sun, K. He, H. M. Cheng and F. Li, Angew. Chem. Int. Ed., 2019, 58, 11978 |
15. | F. Wu, H. Yang, Y. Bai and C. Wu, Adv. Mater., 2019, 31, 1806510 |
16. | M.-C. Lin, M. Gong, B. A. Lu, Y. P. Wu, D.-Y. Wang, M. Y. Guan, M. Angell, C. X. Chen, J. Yang, B.-J. Hwang and H. J. Dai, Nature, 2015, 520, 324 |
17. | D. Tommasi, Traité des piles électriques: piles hydro-électriques accumulateurs, piles thermo-électriques et pyro-électriques, George Carré, 1889. |
18. | G. W. Heise, E. A. Schumacher and N. Cahoon, J. Electrochem. Soc., 1948, 94, 99 |
19. | Sargent, D. E. Voltaic Cell. US Patent 2554447, 1951. |
20. | S. Zaromb, J. Electrochem. Soc., 1962, 109, 1125 |
21. | B. S. Del Duca, J. Electrochem. Soc., 1971, 118, 405 |
22. | P. Rolland and G. Mamantov, J. Electrochem. Soc., 1976, 123, 1299 |
23. | N. Koura, J. Electrochem. Soc., 1980, 127, 1529 |
24. | N. Takami and N. Koura, J. Electrochem. Soc., 1989, 136, 730 |
25. | Q.-X. Qin and M. Skyllas-Kazacos, J. Electroanal. Chem. Interfacial Electrochem., 1984, 168, 193 |
26. | C. Dymek, J. Williams, D. Groeger and J. Auborn, J. Electrochem. Soc., 1984, 131, 2887 |
27. | M. P. Paranthaman, G. Brown, X.-G. Sun, J. Nanda, A. Manthiram and A. Manivannan, in ECS Meeting Abstracts, IOP Publishing, 2010. |
28. | L. Shen, X. Du, M. Ma, S. Wang, S. Huang and L. Xiong, Adv. Sustain. Syst., 2022, 6, 2100418 |
29. | Q. F. Zhang, L. L. Wang, J. Wang, C. Y. Xing, J. M. Ge, L. Fan, Z. M. Liu, X. L. Lu, M. G. Wu, X. Z. Yu, H. Zhang and B. A. Lu, Energy Stor. Mater., 2018, 15, 361 |
30. | X. Yu, B. Wang, D. Gong, Z. Xu and B. Lu, Adv. Mater., 2017, 29, 1604118 |
31. | X. Huang, Y. Liu, H. Zhang, J. Zhang, O. Noonan and C. Yu, J. Mater. Chem. A, 2017, 5, 19416 |
32. | Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei and H.-M. Cheng, Nat. Mater., 2011, 10, 424 |
33. | L. Zhang, L. Chen, H. Luo, X. Zhou and Z. Liu, Adv. Energy Mater., 2017, 7, 1700034 |
34. | A. S. Childress, P. Parajuli, J. Zhu, R. Podila and A. M. Rao, Nano Energy, 2017, 39, 69 |
35. | H. Chen, F. Guo, Y. Liu, T. Huang, B. Zheng, N. Ananth, Z. Xu, W. Gao and C. Gao, Adv. Mater., 2017, 29, 1605958 |
36. | H. Chen, H. Y. Xu, S. Y. Wang, T. Q. Huang, J. B. Xi, S. Y. Cai, F. Guo, Z. Xu, W. W. Gao and C. Gao, Sci. Adv., 2017, 3, eaao7233 |
37. | A. Childress, P. Parajuli, S. Eyley, W. Thielemans, R. Podila and A. M. Rao, Chem. Phys. Lett., 2019, 733, 136669 |
38. | H. Huang, F. Zhou, X. Shi, J. Qin, Z. Zhang, X. Bao and Z.-S. Wu, Energy Stor. Mater., 2019, 23, 664 |
39. | J. Smajic, A. Alazmi, N. Batra, T. Palanisamy, D. H. Anjum and P. M. Costa, Small, 2018, 14, 1803584 |
40. | D.-Y. Wang, C.-Y. Wei, M.-C. Lin, C.-J. Pan, H.-L. Chou, H.-A. Chen, M. Gong, Y. P. Wu, C. Z. Yuan, M. Angell, Y.-J. Hsieh, Y.-H. Chen, C.-Y. Wen, C.-W. Chen, B.-J. Hwang, C.-C. Chen and H. J. Dai, Nat. Commun., 2017, 8, 14283 |
41. | H. Huang, F. Zhou, P. Lu, X. Li, P. Das, X. Feng, K. Müllen and Z.-S. Wu, Energy Stor. Mater., 2020, 27, 396 |
42. | Y. Hu, B. Luo, D. Ye, X. Zhu, M. Lyu and L. Wang, Adv. Mater., 2017, 29, 1606132 |
43. | K. Liang, L. Ju, S. Koul, A. Kushima and Y. Yang, Adv. Energy Mater., 2019, 9, 1802543 |
44. | J. Jiang, H. Li, T. Fu, B.-J. Hwang, X. Li and J. Zhao, ACS Appl. Mater. Interfaces, 2018, 10, 17942 |
45. | J. Tu, H. Lei, Z. Yu and S. Jiao, Chem. Commun., 2018, 54, 1343 |
46. | H. Hong, J. Liu, H. Huang, C. Atangana Etogo, X. Yang, B. Guan and L. Zhang, J. Am. Chem. Soc., 2019, 141, 14764 |
47. | G. Li, J. Tu, M. Wang and S. Jiao, J. Mater. Chem. A, 2019, 7, 8368 |
48. | Z. Zhao, Z. Hu, Q. Li, H. Li, X. Zhang, Y. Zhuang, F. Wang and G. Yu, Nano Today, 2020, 32, 100870 |
49. | Z. Yu, S. Jiao, J. Tu, Y. Luo, W.-L. Song, H. Jiao, M. Wang, H. Chen and D. Fang, ACS Nano, 2020, 14, 3469 |
50. | Y. Zhang, B. Zhang, J. Li, J. Liu, X. Huo and F. Kang, Chem. Eng. J., 2021, 403, 126377 |
51. | G. Yang, L. Chen, P. Jiang, Z. Guo, W. Wang and Z. Liu, RSC Adv., 2016, 6, 47655 |
52. | P. Wang, H. Chen, N. Li, X. Zhang, S. Jiao, W.-L. Song and D. Fang, Energy Stor. Mater., 2018, 13, 103 |
53. | H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang and S. Jiao, Chem. Commun., 2015, 51, 11892 |
54. | Y. P. Wu, M. Gong, M.-C. Lin, C. Z. Yuan, M. Angell, L. Huang, D.-Y. Wang, X. D. Zhang, J. Yang, B.-J. Hwang and H. J. Dai, Adv. Mater., 2016, 28, 9218 |
55. | P. Thanwisai, N. Chaiyapo, P. Phuenhinlad, Y. Kanaphan, J. Nash, C. Chotsuwan, A. Klamchuen, Y. Wang, T. Nann and N. Meethong, Carbon, 2022, 191, 195 |
56. | J. Yu, X. Li, N. Li, T. Wu, Y. Liu, C. Li, J. Liu and L. Wang, Small Methods, 2022, 6, 2200026 |
57. | N. Jayaprakash, S. Das and L. Archer, Chem. Commun., 2011, 47, 12610 |
58. | L. D. Reed and E. Menke, J. Electrochem. Soc., 2013, 160, A915 |
59. | M. Chiku, H. Takeda, S. Matsumura, E. Higuchi and H. Inoue, ACS Appl. Mater. Interfaces, 2015, 7, 24385 |
60. | W. Wang, B. Jiang, W. Y. Xiong, H. Sun, Z. S. Lin, L. W. Hu, J. G. Tu, J. G. Hou, H. M. Zhu and S. Q. Jiao, Sci. Rep., 2013, 3, 3383 |
61. | X. Zhang, G. Zhang, S. Wang, S. Li and S. Jiao, J. Mater. Chem. A, 2018, 6, 3084 |
62. | Y. F. Ai, S.-C. Wu, K. Y. Wang, T.-Y. Yang, M. J. Liu, H.-J. Liao, J. C. Sun, J.-H. Chen, S.-Y. Tang, D. C. Wu, T.-Y. Su, Y.-C. Wang, H.-C. Chen, S. Zhang, W.-W. Liu, Y.-Z. Chen, L. Lee, J.-H. He, Z. M. Wang and Y.-L. Chueh, ACS Nano, 2020, 14, 8539 |
63. | J. Liu, Z. Li, X. Huo and J. Li, J. Power Sources, 2019, 422, 49 |
64. | J. Jiang, H. Li, J. X. Huang, K. Li, J. Zeng, Y. Yang, J. Q. Li, Y. H. Wang, J. Wang and J. B. Zhao, ACS Appl. Mater. Interfaces, 2017, 9, 28486 |
65. | J. Wei, W. Chen, D. Chen and K. Yang, J. Electrochem. Soc., 2017, 164, A2304 |
66. | N. Zhu, F. Wu, Z. H. Wang, L. M. Ling, H. Y. Yang, Y. N. Gao, S. N. Guo, L. M. Suo, H. Li, H. J. Xu, Y. Bai and C. Wu, J. Energy Chem., 2020, 51, 72 |
67. | Z. Li, B. Niu, J. Liu, J. Li and F. Kang, ACS Appl. Mater. Interfaces, 2018, 10, 9451 |
68. | S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian, Y. Liu and S. Jiao, Adv. Energy Mater., 2016, 6, 1600137 |
69. | A. Lv, S. Lu, M. Wang, H. Shi, W. Yan and S. Jiao, J. Energy Chem., 2022, 69, 35 |
70. | W. Xing, D. Du, T. Cai, X. Li, J. Zhou, Y. Chai, Q. Xue and Z. Yan, J. Power Sources, 2018, 401, 6 |
71. | T. Cai, L. Zhao, H. Hu, T. Li, X. Li, S. Guo, Y. Li, Q. Xue, W. Xing, Z. Yan and L. Wang, Energy Environ. Sci., 2018, 11, 2341 |
72. | W. Yang, H. Lu, Y. Cao, B. Xu, Y. Deng and W. Cai, ACS Sustain. Chem. Eng., 2019, 7, 4861 |
73. | S. Guo, H. Yang, M. Liu, X. Feng, H. Xu, Y. Bai and C. Wu, ACS Appl. Energy Mater., 2021, 4, 7064 |
74. | M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum and Y. Gogotsi, Science, 2013, 341, 1502 |
75. | A. VahidMohammadi, A. Hadjikhani, S. Shahbazmohamadi and M. Beidaghi, ACS Nano, 2017, 11, 11135 |
76. | M. H. Alfaruqi, S. Lee, H. Kang, B. Sambandam, V. Mathew, J.-Y. Hwang and J. Kim, J. Phys. Chem. C, 2022, 126, 9209 |
77. | P. Canepa, G. S. Gautam, D. C. Hannah, R. Malik, M. Liu, K. G. Gallagher, K. A. Persson and G. Ceder, Chem. Rev., 2017, 117, 4287 |
78. | S. He, D. Zhang, X. Zhang, S. Liu, W. Chu and H. Yu, Adv. Energy Mater., 2021, 11, 2100769 |
79. | G. Cohn, L. Ma and L. A. Archer, J. Power Sources, 2015, 283, 416 |
80. | T. Gao, X. G. Li, X. W. Wang, J. K. Hu, F. D. Han, X. L. Fan, L. M. Suo, A. J. Pearse, S. B. Lee, G. W. Rubloff, K. J Gaskell, M. Noked and C. S. Wang, Angew. Chem. Int. Ed., 2016, 128, 10052 |
81. | X. Yu, M. J. Boyer, G. S. Hwang and A. Manthiram, Chem, 2018, 4, 586 |
82. | X. Yu and A. Manthiram, Adv. Energy Mater., 2017, 7, 1700561 |
83. | D. Zhang, X. Zhang, B. Wang, S. He, S. Liu, M. Tang and H. Yu, J. Mater. Chem. A, 2021, 9, 8966 |
84. | Y. Guo, H. Jin, Z. Qi, Z. Hu, H. Ji and L. J. Wan, Adv. Funct. Mater., 2019, 29, 1807676 |
85. | Y. Guo, Z. Hu, J. Wang, Z. Peng, J. Zhu, H. Ji and L. J. Wan, Angew. Chem. Int. Ed., 2020, 132, 23163 |
86. | K. Zhang, T. H. Lee, J. H. Cha, H. W. Jang, M. Shokouhimehr and J.-W. Choi, Electron. Mater. Lett., 2019, 15, 720 |
87. | R. Fehrmann, N. Bjerrum and H. Andreasen, Inorg. Chem., 1975, 14, 2259 |
88. | R. Marassi, G. Mamantov and J. Chambers, Inorg. Nucl. Chem. Lett., 1975, 11, 245 |
89. | M. Matsunaga, M. Morimitsu and K. Hosokawa, J. Electrochem. Soc., 1995, 142, 2910 |
90. | J. Robinson and R. Osteryoung, J. Electrochem. Soc., 1978, 125, 1454 |
91. | X. Huang, Y. Liu, C. Liu, J. Zhang, O. Noonan and C. Yu, Chem. Sci., 2018, 9, 5178 |
92. | H. Lei, S. Jiao, J. Tu, W.-L. Song, X. Zhang, M. Wang, S. Li, H. Chen and D. Fang, Chem. Eng. J., 2020, 385, 123452 |
93. | Z. Li, J. Liu, X. Huo, J. Li and F. Kang, ACS Appl. Mater. Interfaces, 2019, 11, 45709 |
94. | Z. Li, X. Wang, X. Li and W. Zhang, Chem. Eng. J., 2020, 400, 126000 |
95. | T. Zhang, T. Cai, W. Xing, T. Li, B. Liang, H. Hu, L. Zhao, X. Li and Z. Yan, Energy Stor. Mater., 2021, 41, 667 |
96. | T. Lu, Z. Zhang, B. Chen, S. Dong, C. Wang, A. Du, L. Wang, J. Ma and G. Cui, Mater. Today Energy, 2020, 17, 100450 |
97. | H. Jiao, D. Tian, S. Li, C. Fu and S. Jiao, ACS Appl. Energy Mater., 2018, 1, 4924 |
98. | X. Zhang, S. Jiao, J. Tu, W.-L. Song, X. Xiao, S. Li, M. Wang, H. Lei, D. Tian, H. Chen and D. Fang, Energy Environ. Sci., 2019, 12, 1918 |
99. | X. Zhang, M. Wang, J. Tu and S. Jiao, J. Energy Chem., 2021, 57, 378 |
100. | T. Mori, Y. Orikasa, K. Nakanishi, C. Kezheng, M. Hattori, T. Ohta and Y. Uchimoto, J. Power Sources, 2016, 313, 9 |
101. | Y. Hu, H. Huang, D. Yu, X. Wang, L. Li, H. Hu, X. Zhu, S. Peng and L. Wang, Nano-Micro Lett., 2021, 13, 159 |
102. | Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu, S. Wang, L. Li, S. Peng and L. Wang, Adv. Mater., 2018, 30, 1703824 |
103. | R. Zhuang, Z. Huang, S. Wang, J. Qiao, J.-C. Wu and J. Yang, Chem. Eng. J., 2021, 409, 128235 |
104. | S. Wang, S. Jiao, J. Wang, H.-S. Chen, D. Tian, H. Lei and D.-N. Fang, ACS Nano, 2017, 11, 469 |
105. | A. Lv, S. Lu, W. Yan, W. Hu and M. Wang, Sustain. Energy Fuels, 2021, 5, 6328 |
106. | G. Li, M. Kou, J. Tu, Y. Luo, M. Wang and S. Jiao, Chem. Eng. J., 2021, 421, 127792 |
107. | L. Yao, S. Ju, T. Xu and X. Yu, ACS Nano, 2021, 15, 13662 |
108. | Z. Li, W. Lv, G. Wu, X. Li, X. Wang and W. Zhang, Chem. Eng. J., 2022, 430, 133135 |
109. | W. Guan, L. Wang, H. Lei, J. Tu and S. Jiao, Nanoscale, 2019, 11, 16437 |
110. | Y. Du, B. Zhang, W. Zhang, H. Jin, J. Qin, J. Wan, J. Zhang and G. Chen, Energy Stor. Mater., 2021, 38, 231 |
111. | D. J. Kim, D.-J. Yoo, M. T. Otley, A. Prokofjevs, C. Pezzato, M. Owczarek, S. J. Lee, J. W. Choi and J. F. Stoddart, Nat. Energy, 2019, 4, 51 |
112. | S. Wang, S. Huang, M. Yao, Y. Zhang and Z. Niu, Angew. Chem. Int. Ed., 2020, 59, 11800 |
113. | M. Walter, K. V. Kravchyk, C. Böfer, R. Widmer and M. V. Kovalenko, Adv. Mater., 2018, 30, 1705644 |
114. | X. Han, S. Li, W. L. Song, N. Chen, H. Chen, S. Huang and S. Jiao, Adv. Energy Mater., 2021, 11, 2101446 |
115. | D.-J. Yoo, M. Heeney, F. Glöcklhofer and J. W. Choi, Nat. Commun., 2021, 12, 2386 |
116. | J. Bitenc, N. Lindahl, A. Vizintin, M. E. Abdelhamid, R. Dominko and P. Johansson, Energy Stor. Mater., 2020, 24, 379 |
117. | D. Kong, T. Cai, H. Fan, H. Hu, X. Wang, Y. Cui, D. Wang, Y. Wang, H. Hu, M. Wu, Q. Xue, Z. Yan, X. Li, L. Zhao and W. Xing, Angew. Chem. Int. Ed., 2022, 61, e202114681 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Comparison of Al and other metal anodes in electrochemical systems in terms of gravimetric and volumetric capacity, abundance, and cost.
A brief history of Aluminum battery developments.[16,27] Copyright 2015, Nature Publishing Group. Copyright 2010, IOP Publishing.
Typical configuration of a RAB cell using chloroaluminate anions as the charge carrier.
The comparison of the redox mechanisms, advantages and challenges of different types of cathodes in RABs.
a SEM image of 3D graphitic foam; scale bar, 300 μm. Inset, photograph of 3D graphitic foam; scale bar, 1 cm. b Working mechanism of Al-graphite cell.[16] Copyright 2015, Nature Publishing Group.
a Scheme of edge-rich graphene and CVD-grown graphene foam for RABs.[29] Copyright 2018, Elsevier. b SEM images showing in-plane nanovoids formation throughout the graphene foam after Ar+-plasma etching.[30] Copyright 2017, Wiley-VCH Verlag GmbH & Co. c Schematics of AlCl4− intercalation chemistry in few-layer graphene and thick graphite cathode.[33] Copyright 2017, Wiley-VCH Verlag GmbH & Co. d Schematic of defect-free graphene design.[35] Copyright 2017, Wiley-VCH Verlag GmbH & Co. e “3H3C” design and photograph of graphene cathode.[36] Copyright 2017, American Association for the Advancement of Science.
a Schematic illustration of the energy storage (up) and capacity-deterioration (down) mechanisms for CoSe2@C-ND cathode. b SEM images of CoSe2@C-ND@rGO. c Cycling performance of CoSe2@C-ND@rGO and rGO cathodes at the current density of 1 A g−1.[71] Copyright 2018, Royal Society of Chemistry.
a A typical charge-discharge curves and b cycling stability of the Al-S battery with S@microporous carbon cathode.[80] Copyright 2016, Wiley-VCH Verlag GmbH & Co. c Schematic illustration of the charge-discharge mechanism of the Al-S battery.[82] Copyright 2017, Wiley-VCH Verlag GmbH & Co. d UV-vs spectra of the S cathodes discharged in Li-S, Na-S and Al-S batteries.[81] Copyright 2018, Cell Press. e Schematic illustration of the preparation of S@HKUST-10C. f Cycling performance of S@HKUST-10C, S@C, and S under 1 A g−1.[84] Copyright 2019, Wiley-VCH Verlag GmbH & Co.
a Schematic illustration of the proposed mechanism of Al-Se batteries using Se nanowires and CMK-3 composite cathodes, and reversible reaction of the Se cathode.[91] Copyright 2018, Royal Society of Chemistry. b The schematic diagram of the redox cycle process of Se cathode.[92] Copyright 2020, Elsevier.
a Working mechanism and b cyclic stability of an Al-Te cell.[97] Copyright 2018, American Chemical Society.
a Electrochemical redox chemistry of PQ-∆ cathode.[111] Copyright 2019, Nature Publishing Group. b Electrochemical redox mechanism of TDK cathode.[115] Copyright 2021, Nature Publishing Group. c Electrochemical redox mechanism and d charge-discharge curves and cycling stability of PANI (H+)@AWCNT cathode.[112] Copyright 2020, Wiley-VCH Verlag GmbH & Co.
a Working mechanism of a RAB cell during charging with a polypyrene cathode. b Electrochemical performance of RABs with polypyrene and pyrene as cathodes.[113] Copyright 2020, Wiley-VCH Verlag GmbH & Co.