Yueqi Kong, Nashaat Ahmed Gadelhak, Shuimei Chen, Dmitrii Rakov, Ashok Kumar Nanjundan, Chengzhong Yu, Xiaodan Huang. Cathode choices for rechargeable aluminium batteries: the past decade and future[J]. Materials Lab, 2023, 2(2): 220055. doi: 10.54227/mlab.20220055
Citation: Yueqi Kong, Nashaat Ahmed Gadelhak, Shuimei Chen, Dmitrii Rakov, Ashok Kumar Nanjundan, Chengzhong Yu, Xiaodan Huang. Cathode choices for rechargeable aluminium batteries: the past decade and future[J]. Materials Lab, 2023, 2(2): 220055. doi: 10.54227/mlab.20220055

REVIEW ARTICLE

Cathode choices for rechargeable aluminium batteries: the past decade and future

More Information
  • Rechargeable aluminium batteries are a promising alternative battery technology compared to lithium-ion batteries, because of the high theoretical capacity, low cost and high safety of aluminium. The past decade has witnessed the rapid development of rechargeable aluminium battery technology with the focus on exploring high performance cathode materials and investigating their charge storage mechanisms. However, the challenges in the cathode research including inadequate capacity, sluggish reaction kinetics and inferior cycling stability still remain. Various strategies have been attempted to address these challenges to realize the advantages of rechargeable aluminium batteries. The present review aims to collect the comprehensive body of research performed in the literature hitherto to develop interaction/conversion/coordination type cathodes for rechargeable aluminium batteries. Future research directions and prospects in rechargeable aluminium battery field are also proposed.


  • 加载中
  • Yueqi Kong received her PhD degree (2022) from the University of Queensland (Australia). She is currently a postdoctoral research fellow under the supervision of Prof. Chengzhong Yu and Dr. Xiaodan Huang at the University of Queensland (Australia). Her research focuses on the design and synthesis of electrode materials for Rechargeable aluminium batteries.
    Nashaat Ahmed received his Bachelor (2012) and Master degree (2018) at Beni Suef University (Egypt). He is currently a Ph.D. student under the supervision of Prof. Chengzhong Yu and Dr. Xiaodan Huang at the University of Queensland (Australia). His research focuses on the constructing portable rechargeable aluminium batteries by improving assembly technology, including design separators, and optimizing electrodes.
    Shuimei Chen received her Master degree in China University of Geosciences, Wuhan in 2019. She is currently a Ph.D. student under the supervision of Dr. Xiaodan Huang and Prof. Chengzhong Yu at the University of Queensland (Australia). Her research focuses on the design and synthesis of electrode materials for rechargeable aluminium ion batteries.
    Dmitrii Rakov received his PhD degree in Deakin University (Australia) in 2022 under the supervision of Prof. Maria Forsyth. He is currently a postdoctoral research fellow under the supervision of Prof. Chengzhong Yu and Dr. Xiaodan Huang at the University of Queensland (Australia). His research focuses on the optimization of the charge transfer mechanism in energy storage devices.
    Ashok Kumar Nanjundan received his PhD degree in Materials Chemistry from Pukyong National University (Korea) in 2010 and then worked as a research fellow at Atomic Energy and Alternative Energies Commission, France, Trinity College Dublin, Kumamoto University, and the University of Queensland until 2019. He is currently the chief scientific officer of Graphene Manufacturing Group Ltd. (Australia) and holds adjunct professor positions at the University of Queensland and Queensland University of Technology. Dr. Ashok Kumar Nanjundan has over 20 years of academic and commercial chemical and materials engineering experience focused on carbon nanomaterials (graphene) for energy storage and conversion applications.
    Chengzhong Yu received his PhD degree in Chemistry from Fudan University (China) in 2002 and then worked as a professor at Fudan University until 2010. He is currently a professor at the University of Queensland (Australia) and East China Normal University. His research focuses on nanoporous materials and nanostructured composites for applications in biotechnology, clean energy, and environmental protection.
    Xiaodan Huang received his Bachelor (2007) and PhD degrees (2012) Chemistry from Fudan University (China). He is currently an Advance Queensland Research Fellow in Professor Chengzhong Yu's group at the University of Queensland (Australia). His research focuses on the design and synthesis of novel nanostructured materials for energy storage and environmental protection.
  • 1. M. Allen, M. Babiker, Y. Chen and H. C. de Coninck, IPCC Special Report Global Warming of 1.5 °C , Intergovernmental Panel on Climate Change, 2018.
    2. IEA, Net Zero by 2050, Paris. https://www.iea.org/reports/net-zero-by-2050, May 2021.
    3. M. Li, J. Lu, Z. Chen and K. Amine, Adv. Mater., 2018, 30, 1800561
    4. G. E. Blomgren, J. Electrochem. Soc., 2016, 164, A5019
    5. N. Nitta, F. Wu, J. T. Lee and G. Yushin, Mater. Today, 2015, 18, 252
    6. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 2011, 4, 3243
    7. R. Sun, S. Dong, F. Xu, Z. Li, C. Wang, S. Lu and H. Fan, Dalton Trans., 2022, 51, 7607
    8. X. Guo, W. Zhang, J. Shi, M. Duan, S. Liu, J. Zhang, Y. Liu, S. Xiong and Q. Kong, Nano Res., 2022, 15, 3, 2092
    9. Z. Li, Z. Peng, R. Sui, Z. Qin, X. Liu. C. Wang, H. Fan and S. Lu, Chi. J. Chem., 2021, 39, 2599
    10. Z. Gu, J. Guo, Z. Sun, X. Zhao, X. Wang, H. Liang, X. Wu and Y. Liu, Cell Rep. Phys. Sci., 2021, 2, 100665
    11. Y. Heng, Z. Gu, J. Guo and X. Wu, Acta. Phys. Chim. Sin., 2021, 37, 2005013
    12. J. Tu, W.-L. Song, H. Lei, Z. Yu, L.-L. Chen, M. Wang and S. Jiao, Chem. Rev., 2021, 121, 4903
    13. E. Faegh, B. Ng, D. Hayman and W. E. Mustain, Nat. Energy, 2021, 6, 21
    14. H. Yang, H. Li, J. Li, Z. Sun, K. He, H. M. Cheng and F. Li, Angew. Chem. Int. Ed., 2019, 58, 11978
    15. F. Wu, H. Yang, Y. Bai and C. Wu, Adv. Mater., 2019, 31, 1806510
    16. M.-C. Lin, M. Gong, B. A. Lu, Y. P. Wu, D.-Y. Wang, M. Y. Guan, M. Angell, C. X. Chen, J. Yang, B.-J. Hwang and H. J. Dai, Nature, 2015, 520, 324
    17. D. Tommasi, Traité des piles électriques: piles hydro-électriques accumulateurs, piles thermo-électriques et pyro-électriques, George Carré, 1889.
    18. G. W. Heise, E. A. Schumacher and N. Cahoon, J. Electrochem. Soc., 1948, 94, 99
    19. Sargent, D. E. Voltaic Cell. US Patent 2554447, 1951.
    20. S. Zaromb, J. Electrochem. Soc., 1962, 109, 1125
    21. B. S. Del Duca, J. Electrochem. Soc., 1971, 118, 405
    22. P. Rolland and G. Mamantov, J. Electrochem. Soc., 1976, 123, 1299
    23. N. Koura, J. Electrochem. Soc., 1980, 127, 1529
    24. N. Takami and N. Koura, J. Electrochem. Soc., 1989, 136, 730
    25. Q.-X. Qin and M. Skyllas-Kazacos, J. Electroanal. Chem. Interfacial Electrochem., 1984, 168, 193
    26. C. Dymek, J. Williams, D. Groeger and J. Auborn, J. Electrochem. Soc., 1984, 131, 2887
    27. M. P. Paranthaman, G. Brown, X.-G. Sun, J. Nanda, A. Manthiram and A. Manivannan, in ECS Meeting Abstracts, IOP Publishing, 2010.
    28. L. Shen, X. Du, M. Ma, S. Wang, S. Huang and L. Xiong, Adv. Sustain. Syst., 2022, 6, 2100418
    29. Q. F. Zhang, L. L. Wang, J. Wang, C. Y. Xing, J. M. Ge, L. Fan, Z. M. Liu, X. L. Lu, M. G. Wu, X. Z. Yu, H. Zhang and B. A. Lu, Energy Stor. Mater., 2018, 15, 361
    30. X. Yu, B. Wang, D. Gong, Z. Xu and B. Lu, Adv. Mater., 2017, 29, 1604118
    31. X. Huang, Y. Liu, H. Zhang, J. Zhang, O. Noonan and C. Yu, J. Mater. Chem. A, 2017, 5, 19416
    32. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei and H.-M. Cheng, Nat. Mater., 2011, 10, 424
    33. L. Zhang, L. Chen, H. Luo, X. Zhou and Z. Liu, Adv. Energy Mater., 2017, 7, 1700034
    34. A. S. Childress, P. Parajuli, J. Zhu, R. Podila and A. M. Rao, Nano Energy, 2017, 39, 69
    35. H. Chen, F. Guo, Y. Liu, T. Huang, B. Zheng, N. Ananth, Z. Xu, W. Gao and C. Gao, Adv. Mater., 2017, 29, 1605958
    36. H. Chen, H. Y. Xu, S. Y. Wang, T. Q. Huang, J. B. Xi, S. Y. Cai, F. Guo, Z. Xu, W. W. Gao and C. Gao, Sci. Adv., 2017, 3, eaao7233
    37. A. Childress, P. Parajuli, S. Eyley, W. Thielemans, R. Podila and A. M. Rao, Chem. Phys. Lett., 2019, 733, 136669
    38. H. Huang, F. Zhou, X. Shi, J. Qin, Z. Zhang, X. Bao and Z.-S. Wu, Energy Stor. Mater., 2019, 23, 664
    39. J. Smajic, A. Alazmi, N. Batra, T. Palanisamy, D. H. Anjum and P. M. Costa, Small, 2018, 14, 1803584
    40. D.-Y. Wang, C.-Y. Wei, M.-C. Lin, C.-J. Pan, H.-L. Chou, H.-A. Chen, M. Gong, Y. P. Wu, C. Z. Yuan, M. Angell, Y.-J. Hsieh, Y.-H. Chen, C.-Y. Wen, C.-W. Chen, B.-J. Hwang, C.-C. Chen and H. J. Dai, Nat. Commun., 2017, 8, 14283
    41. H. Huang, F. Zhou, P. Lu, X. Li, P. Das, X. Feng, K. Müllen and Z.-S. Wu, Energy Stor. Mater., 2020, 27, 396
    42. Y. Hu, B. Luo, D. Ye, X. Zhu, M. Lyu and L. Wang, Adv. Mater., 2017, 29, 1606132
    43. K. Liang, L. Ju, S. Koul, A. Kushima and Y. Yang, Adv. Energy Mater., 2019, 9, 1802543
    44. J. Jiang, H. Li, T. Fu, B.-J. Hwang, X. Li and J. Zhao, ACS Appl. Mater. Interfaces, 2018, 10, 17942
    45. J. Tu, H. Lei, Z. Yu and S. Jiao, Chem. Commun., 2018, 54, 1343
    46. H. Hong, J. Liu, H. Huang, C. Atangana Etogo, X. Yang, B. Guan and L. Zhang, J. Am. Chem. Soc., 2019, 141, 14764
    47. G. Li, J. Tu, M. Wang and S. Jiao, J. Mater. Chem. A, 2019, 7, 8368
    48. Z. Zhao, Z. Hu, Q. Li, H. Li, X. Zhang, Y. Zhuang, F. Wang and G. Yu, Nano Today, 2020, 32, 100870
    49. Z. Yu, S. Jiao, J. Tu, Y. Luo, W.-L. Song, H. Jiao, M. Wang, H. Chen and D. Fang, ACS Nano, 2020, 14, 3469
    50. Y. Zhang, B. Zhang, J. Li, J. Liu, X. Huo and F. Kang, Chem. Eng. J., 2021, 403, 126377
    51. G. Yang, L. Chen, P. Jiang, Z. Guo, W. Wang and Z. Liu, RSC Adv., 2016, 6, 47655
    52. P. Wang, H. Chen, N. Li, X. Zhang, S. Jiao, W.-L. Song and D. Fang, Energy Stor. Mater., 2018, 13, 103
    53. H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang and S. Jiao, Chem. Commun., 2015, 51, 11892
    54. Y. P. Wu, M. Gong, M.-C. Lin, C. Z. Yuan, M. Angell, L. Huang, D.-Y. Wang, X. D. Zhang, J. Yang, B.-J. Hwang and H. J. Dai, Adv. Mater., 2016, 28, 9218
    55. P. Thanwisai, N. Chaiyapo, P. Phuenhinlad, Y. Kanaphan, J. Nash, C. Chotsuwan, A. Klamchuen, Y. Wang, T. Nann and N. Meethong, Carbon, 2022, 191, 195
    56. J. Yu, X. Li, N. Li, T. Wu, Y. Liu, C. Li, J. Liu and L. Wang, Small Methods, 2022, 6, 2200026
    57. N. Jayaprakash, S. Das and L. Archer, Chem. Commun., 2011, 47, 12610
    58. L. D. Reed and E. Menke, J. Electrochem. Soc., 2013, 160, A915
    59. M. Chiku, H. Takeda, S. Matsumura, E. Higuchi and H. Inoue, ACS Appl. Mater. Interfaces, 2015, 7, 24385
    60. W. Wang, B. Jiang, W. Y. Xiong, H. Sun, Z. S. Lin, L. W. Hu, J. G. Tu, J. G. Hou, H. M. Zhu and S. Q. Jiao, Sci. Rep., 2013, 3, 3383
    61. X. Zhang, G. Zhang, S. Wang, S. Li and S. Jiao, J. Mater. Chem. A, 2018, 6, 3084
    62. Y. F. Ai, S.-C. Wu, K. Y. Wang, T.-Y. Yang, M. J. Liu, H.-J. Liao, J. C. Sun, J.-H. Chen, S.-Y. Tang, D. C. Wu, T.-Y. Su, Y.-C. Wang, H.-C. Chen, S. Zhang, W.-W. Liu, Y.-Z. Chen, L. Lee, J.-H. He, Z. M. Wang and Y.-L. Chueh, ACS Nano, 2020, 14, 8539
    63. J. Liu, Z. Li, X. Huo and J. Li, J. Power Sources, 2019, 422, 49
    64. J. Jiang, H. Li, J. X. Huang, K. Li, J. Zeng, Y. Yang, J. Q. Li, Y. H. Wang, J. Wang and J. B. Zhao, ACS Appl. Mater. Interfaces, 2017, 9, 28486
    65. J. Wei, W. Chen, D. Chen and K. Yang, J. Electrochem. Soc., 2017, 164, A2304
    66. N. Zhu, F. Wu, Z. H. Wang, L. M. Ling, H. Y. Yang, Y. N. Gao, S. N. Guo, L. M. Suo, H. Li, H. J. Xu, Y. Bai and C. Wu, J. Energy Chem., 2020, 51, 72
    67. Z. Li, B. Niu, J. Liu, J. Li and F. Kang, ACS Appl. Mater. Interfaces, 2018, 10, 9451
    68. S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian, Y. Liu and S. Jiao, Adv. Energy Mater., 2016, 6, 1600137
    69. A. Lv, S. Lu, M. Wang, H. Shi, W. Yan and S. Jiao, J. Energy Chem., 2022, 69, 35
    70. W. Xing, D. Du, T. Cai, X. Li, J. Zhou, Y. Chai, Q. Xue and Z. Yan, J. Power Sources, 2018, 401, 6
    71. T. Cai, L. Zhao, H. Hu, T. Li, X. Li, S. Guo, Y. Li, Q. Xue, W. Xing, Z. Yan and L. Wang, Energy Environ. Sci., 2018, 11, 2341
    72. W. Yang, H. Lu, Y. Cao, B. Xu, Y. Deng and W. Cai, ACS Sustain. Chem. Eng., 2019, 7, 4861
    73. S. Guo, H. Yang, M. Liu, X. Feng, H. Xu, Y. Bai and C. Wu, ACS Appl. Energy Mater., 2021, 4, 7064
    74. M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum and Y. Gogotsi, Science, 2013, 341, 1502
    75. A. VahidMohammadi, A. Hadjikhani, S. Shahbazmohamadi and M. Beidaghi, ACS Nano, 2017, 11, 11135
    76. M. H. Alfaruqi, S. Lee, H. Kang, B. Sambandam, V. Mathew, J.-Y. Hwang and J. Kim, J. Phys. Chem. C, 2022, 126, 9209
    77. P. Canepa, G. S. Gautam, D. C. Hannah, R. Malik, M. Liu, K. G. Gallagher, K. A. Persson and G. Ceder, Chem. Rev., 2017, 117, 4287
    78. S. He, D. Zhang, X. Zhang, S. Liu, W. Chu and H. Yu, Adv. Energy Mater., 2021, 11, 2100769
    79. G. Cohn, L. Ma and L. A. Archer, J. Power Sources, 2015, 283, 416
    80. T. Gao, X. G. Li, X. W. Wang, J. K. Hu, F. D. Han, X. L. Fan, L. M. Suo, A. J. Pearse, S. B. Lee, G. W. Rubloff, K. J Gaskell, M. Noked and C. S. Wang, Angew. Chem. Int. Ed., 2016, 128, 10052
    81. X. Yu, M. J. Boyer, G. S. Hwang and A. Manthiram, Chem, 2018, 4, 586
    82. X. Yu and A. Manthiram, Adv. Energy Mater., 2017, 7, 1700561
    83. D. Zhang, X. Zhang, B. Wang, S. He, S. Liu, M. Tang and H. Yu, J. Mater. Chem. A, 2021, 9, 8966
    84. Y. Guo, H. Jin, Z. Qi, Z. Hu, H. Ji and L. J. Wan, Adv. Funct. Mater., 2019, 29, 1807676
    85. Y. Guo, Z. Hu, J. Wang, Z. Peng, J. Zhu, H. Ji and L. J. Wan, Angew. Chem. Int. Ed., 2020, 132, 23163
    86. K. Zhang, T. H. Lee, J. H. Cha, H. W. Jang, M. Shokouhimehr and J.-W. Choi, Electron. Mater. Lett., 2019, 15, 720
    87. R. Fehrmann, N. Bjerrum and H. Andreasen, Inorg. Chem., 1975, 14, 2259
    88. R. Marassi, G. Mamantov and J. Chambers, Inorg. Nucl. Chem. Lett., 1975, 11, 245
    89. M. Matsunaga, M. Morimitsu and K. Hosokawa, J. Electrochem. Soc., 1995, 142, 2910
    90. J. Robinson and R. Osteryoung, J. Electrochem. Soc., 1978, 125, 1454
    91. X. Huang, Y. Liu, C. Liu, J. Zhang, O. Noonan and C. Yu, Chem. Sci., 2018, 9, 5178
    92. H. Lei, S. Jiao, J. Tu, W.-L. Song, X. Zhang, M. Wang, S. Li, H. Chen and D. Fang, Chem. Eng. J., 2020, 385, 123452
    93. Z. Li, J. Liu, X. Huo, J. Li and F. Kang, ACS Appl. Mater. Interfaces, 2019, 11, 45709
    94. Z. Li, X. Wang, X. Li and W. Zhang, Chem. Eng. J., 2020, 400, 126000
    95. T. Zhang, T. Cai, W. Xing, T. Li, B. Liang, H. Hu, L. Zhao, X. Li and Z. Yan, Energy Stor. Mater., 2021, 41, 667
    96. T. Lu, Z. Zhang, B. Chen, S. Dong, C. Wang, A. Du, L. Wang, J. Ma and G. Cui, Mater. Today Energy, 2020, 17, 100450
    97. H. Jiao, D. Tian, S. Li, C. Fu and S. Jiao, ACS Appl. Energy Mater., 2018, 1, 4924
    98. X. Zhang, S. Jiao, J. Tu, W.-L. Song, X. Xiao, S. Li, M. Wang, H. Lei, D. Tian, H. Chen and D. Fang, Energy Environ. Sci., 2019, 12, 1918
    99. X. Zhang, M. Wang, J. Tu and S. Jiao, J. Energy Chem., 2021, 57, 378
    100. T. Mori, Y. Orikasa, K. Nakanishi, C. Kezheng, M. Hattori, T. Ohta and Y. Uchimoto, J. Power Sources, 2016, 313, 9
    101. Y. Hu, H. Huang, D. Yu, X. Wang, L. Li, H. Hu, X. Zhu, S. Peng and L. Wang, Nano-Micro Lett., 2021, 13, 159
    102. Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu, S. Wang, L. Li, S. Peng and L. Wang, Adv. Mater., 2018, 30, 1703824
    103. R. Zhuang, Z. Huang, S. Wang, J. Qiao, J.-C. Wu and J. Yang, Chem. Eng. J., 2021, 409, 128235
    104. S. Wang, S. Jiao, J. Wang, H.-S. Chen, D. Tian, H. Lei and D.-N. Fang, ACS Nano, 2017, 11, 469
    105. A. Lv, S. Lu, W. Yan, W. Hu and M. Wang, Sustain. Energy Fuels, 2021, 5, 6328
    106. G. Li, M. Kou, J. Tu, Y. Luo, M. Wang and S. Jiao, Chem. Eng. J., 2021, 421, 127792
    107. L. Yao, S. Ju, T. Xu and X. Yu, ACS Nano, 2021, 15, 13662
    108. Z. Li, W. Lv, G. Wu, X. Li, X. Wang and W. Zhang, Chem. Eng. J., 2022, 430, 133135
    109. W. Guan, L. Wang, H. Lei, J. Tu and S. Jiao, Nanoscale, 2019, 11, 16437
    110. Y. Du, B. Zhang, W. Zhang, H. Jin, J. Qin, J. Wan, J. Zhang and G. Chen, Energy Stor. Mater., 2021, 38, 231
    111. D. J. Kim, D.-J. Yoo, M. T. Otley, A. Prokofjevs, C. Pezzato, M. Owczarek, S. J. Lee, J. W. Choi and J. F. Stoddart, Nat. Energy, 2019, 4, 51
    112. S. Wang, S. Huang, M. Yao, Y. Zhang and Z. Niu, Angew. Chem. Int. Ed., 2020, 59, 11800
    113. M. Walter, K. V. Kravchyk, C. Böfer, R. Widmer and M. V. Kovalenko, Adv. Mater., 2018, 30, 1705644
    114. X. Han, S. Li, W. L. Song, N. Chen, H. Chen, S. Huang and S. Jiao, Adv. Energy Mater., 2021, 11, 2101446
    115. D.-J. Yoo, M. Heeney, F. Glöcklhofer and J. W. Choi, Nat. Commun., 2021, 12, 2386
    116. J. Bitenc, N. Lindahl, A. Vizintin, M. E. Abdelhamid, R. Dominko and P. Johansson, Energy Stor. Mater., 2020, 24, 379
    117. D. Kong, T. Cai, H. Fan, H. Hu, X. Wang, Y. Cui, D. Wang, Y. Wang, H. Hu, M. Wu, Q. Xue, Z. Yan, X. Li, L. Zhao and W. Xing, Angew. Chem. Int. Ed., 2022, 61, e202114681
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(3)

Information

Article Metrics

Article views(2863) PDF downloads(620) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint