Citation: | Xinzhi Wu, Jian Huang, Zihan Zhou, Zhijia Han, Feng Jiang, Huan Li, Yupeng Wang, Kang Zhu, Weishu Liu. Mg3Sb2-based thermoelectrics: materials, interfaces, and devices[J]. Materials Lab, 2023, 2(2): 230003. doi: 10.54227/mlab.20230003 |
Thermoelectric power generators enable the direct conversion between waste heat and electricity near room temperatures, providing an environmentally friendly solution toward mitigating the ever-increasing global energy issues. Over the past years, we have witnessed significant advances in Mg3Sb2-based thermoelectric conversion materials. However, the device-relative efforts lag behind the materials-level works. In this mini-review, we summarize the advances in Mg3Sb2-based thermoelectrics from materials to devices. Further, we shine some light on the device-level challenge, including the design of thermoelectric interface materials, the stability issue, and the system-level full-parameter optimization. Finally, we discuss the new application scenarios exploration to inspire confidence in device-level efforts towards practical applications.
1. | L. E. Bell, Science, 2008, 321, 1457 |
2. | S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N. K. Singh, A. Soni, J. Q. He, U. V. Waghmare and K. Biswas, Science, 2021, 371, 722 |
3. | Z. Liu, Materials Lab, 2022, 1, 220003 |
4. | C. Candolfi, S. E. Oualid, D. Ibrahim, S. Misra, O. E. Hamouli, A. Léon, A. Dauscher, P. Masschelein, P. Gall, P. Gougeon, C. Semprimoschnig and B. Lenoir, CEAS Space Journal, 2021, 13, 325 |
5. | I. Petsagkourakis, K. Tybrandt, X. Crispin, I. Ohkubo, N. Satoh and T. Mori, Sci. Technol. Adv. Mater., 2018, 19, 836 |
6. | M. Haras and T. Skotnicki, Nano Energy, 2018, 54, 461−476 |
7. | D. Champier, Energy Conversion and Management, 2017, 140, 167 |
8. | G. Schierning, Nat. Energy, 2018, 3, 92 |
9. | J. Mao, Z. H. Liu and Z. F. Ren, Science, 2019, 365, 495 |
10. | J. Yang, G. Li, H. Zhu, N. Chen, T. Lu, J. Gao, L. Guo, J. Xiang, P. Sun, Y. Yao, R. Yang and H. Zhao, Joule, 2021, 6, 193 |
11. | I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley and R. Venkatasubramanian, Nat. Nanotechnol., 2009, 4, 235 |
12. | Q. Zhang, K. Deng, L. Wilkens, H. Reith and K. Nielsch, Nature Electronics, 2022, 5, 333 |
13. | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J. Pennycook and J. He, Science, 2021, 371, 830 |
14. | Y. F. Xing, R. H. Liu, J. C. Liao, Q. H. Zhang, X. G. Xia, C. Wang, H. Huang, J. Chu, M. Gu, T. J. Zhu, C. X. Zhu, F. F. Xu, D. X. Yao, Y. P. Zeng, S. Q. Bai, C. Uher and L. D. Chen, Energ Environ. Sci., 2019, 12, 3390 |
15. | Z. Bu, X. Zhang, B. Shan, J. Tang, H. Liu, Z. Chen, S. Lin, W. Li and Y. Pei, Sci Adv, 2021, 7, eabf2738 |
16. | B. C. Qin, D. Y. Wang, X. X. Liu, Y. X. Qin, J. F. Dong, J. F. Luo, J. W. Li, W. Liu, G. J. Tan, X. F. Tang, J. F. Li, J. Q. He and L. D. Zhao, Science, 2021, 373, 556 |
17. | P. F. Qiu, T. Mao, Z. F. Huang, X. G. Xia, J. C. Liao, M. T. Agne, M. Gu, Q. H. Zhang, D. D. Ren, S. Q. Bai, X. Shi, G. J. Snyder and L. D. Chen, Joule, 2019, 3, 1538 |
18. | P. J. Ying, R. He, J. Mao, Q. Zhang, H. Reith, J. H. Sui, Z. F. Ren, K. Nielsch and G. Schierning, Nat. Commun., 2021, 12, 1121 |
19. | Z. Bu, X. Zhang, Y. Hu, Z. Chen, S. Lin, W. Li, C. Xiao and Y. Pei, Nat. Commun., 2022, 13, 237 |
20. | Z. Liu, W. Gao, H. Oshima, K. Nagase, C. H. Lee and T. Mori, Nat. Commun., 2022, 13, 1120 |
21. | Jun Pei, Bowen Cai, Hua-Lu Zhuang and Jing-Feng Li, Natl Sci Rev., 2020, 7, 1856 |
22. | F. Jiang, T. Feng, Y. Zhu, C. Xia, C. Liu, Y. Chen and W. Liu, Materials Lab, 2022, 1, 220045 |
23. | H. L. Zhuang, J. Pei, B. W. Cai, J. F. Dong, H. H. Hu, F. H. Sun, Y. Pan, G. J. Snyder and J. F. Li, Adv. Funct. Mater., 2021, 31, 2009681 |
24. | W. S. Liu and S. Q. Bai, J. Materiomics, 2019, 5, 321 |
25. | W. S. Liu, Q. Jie, H. S. Kim and Z. F. Ren, Acta Mater., 2015, 87, 357 |
26. | C. Xu, Z. Liang, W. Ren, S. Song, F. Zhang and Z. Ren, Adv. Energy Mater., 2022, 12, 2202392 |
27. | Q. Zhu, S. W. Song, H. T. Zhu and Z. F. Ren, J. Power Sources, 2019, 414, 393 |
28. | H. J. Shang, Z. X. Liang, C. C. Xu, S. W. Song, D. X. Huang, H. W. Gu, J. Mao, Z. F. Ren and F. Z. Ding, Acta Mater., 2020, 201, 572 |
29. | L. Yin, C. Chen, F. Zhang, X. F. Li, F. X. Bai, Z. W. Zhang, X. Y. Wang, J. Mao, F. Cao, X. J. Chen, J. H. Sui, X. J. Liu and Q. Zhang, Acta Mater., 2020, 198, 25 |
30. | Z. L. Bu, X. Y. Zhang, Y. X. Hu, Z. W. Chen, S. Q. Lin, W. Li and Y. Z. Pei, Energ Environ. Sci., 2021, 14, 6506 |
31. | Z. Liang, C. C. Xu, H. Shang, Q. Zhu, F. Z. Ding, J. Mao and Z. F. Ren, Mater. Today Phys., 2021, 19, 100413 |
32. | Z. H. Liu, N. Sato, W. H. Gao, K. Yubuta, N. Kawamoto, M. Mitome, K. Kurashima, Y. Owada, K. Nagase, C.-H. Lee, J. H. Yi, K. Tsuchiya and T. Mori, Joule, 2021, 5, 1196 |
33. | C. C. Xu, Z. Liang, H. J. Shang, D. Wang, H. Wang, F. Z. Ding, J. Mao and Z. F. Ren, Mater. Today Phys., 2021, 17, 100336 |
34. | Y. Fu, Q. Zhang, Z. Hu, M. Jiang, A. Huang, X. Ai, S. Wan, H. Reith, L. Wang, K. Nielsch and W. Jiang, Energ Environ. Sci., 2022, 15, 3265 |
35. | S. Song, Z. Liang, C. Xu, Y. Wang, X. Shi, W. Ren and Z. Ren, Soft Science, 2022, 2, 13 |
36. | Y. Wang, J. Chen, Y. Jiang, M. Ferhat, S. Ohno, Z. A. Munir, W. Fan and S. Chen, ACS Appl. Mater. Interfaces, 2022, 14, 33419 |
37. | X. Wu, Z. Han, Y. Zhu, B. Deng, K. Zhu, C. Liu, F. Jiang and W. Liu, Acta Mater., 2022, 226, 117616 |
38. | P. Ying, L. Wilkens, H. Reith, N. P. Rodriguez, X. Hong, Q. Lu, C. Hess, K. Nielsch and R. He, Energ Environ. Sci., 2022, 15, 2557 |
39. | J. M. Tarascon and M. Armand, Nature, 2001, 414, 359 |
40. | Z. J. Han, J.-W. Li, F. Jiang, J. Xia, B.-P. Zhang, J.-F. Li and W. S. Liu, J. Materiomics, 2021, 8, 427 |
41. | J. W. Zhang, L. R. Jorgensen, L. R. Song and B. B. Iversen, ACS Appl. Mater. Interfaces, 2022, 14, 31024 |
42. | H. Tamaki, H. K. Sato and T. Kanno, Adv. Mater., 2016, 28, 10182 |
43. | M. Wood, J. J. Kuo, K. Imasato and G. J. Snyder, Adv. Mater., 2019, 31, e1902337 |
44. | X. M. Shi, C. Sun, Z. L. Bu, X. Y. Zhang, Y. X. Wu, S. Q. Lin, W. Li, A. Faghaninia, A. Jain and Y. Z. Pei, Adv. Sci., 2019, 6, 1802286 |
45. | J. S. Liang, X. L. Shi, Y. Peng, W. D. Liu, H. Q. Yang, C. Y. Liu, J. L. Chen, Q. Zhou, L. Miao and Z. G. Chen, Adv. Energy Mater., 2022, 12, 2201086 |
46. | R. Shu, Y. C. Zhou, Q. Wang, Z. J. Han, Y. B. Zhu, Y. Liu, Y. X. Chen, M. Gu, W. Xu, Y. Wang, W. Q. Zhang, L. Huang and W. S. Liu, Adv. Funct. Mater., 2019, 29, 1807235 |
47. | X. M. Shi, T. T. Zhao, X. Y. Zhang, C. Sun, Z. W. Chen, S. Q. Lin, W. Li, H. Gu and Y. Z. Pei, Adv. Mater., 2019, 31, 1970253 |
48. | Y. J. Liu, L. Yin, W. W. Zhang, J. Wang, S. H. Hou, Z. X. Wu, Z. W. Zhang, C. Chen, X. F. Li, H. J. Ji, Q. Zhang, Z. G. Liu and F. Cao, Cell Rep. Phys. Sci., 2021, 2, 100412 |
49. | X. Shi, C. Sun, X. Zhang, Z. Chen, S. Lin, W. Li and Y. Pei, Chem. Mater., 2019, 31, 8987 |
50. | K. Imasato, S. D. Kang and G. J. Snyder, Energ Environ. Sci., 2019, 12, 965 |
51. | S. Ohno, K. Imasato, S. Anand, H. Tamaki, S. D. Kang, P. Gorai, H. K. Sato, E. S. Toberer, T. Kanno and G. J. Snyder, Joule, 2018, 2, 141 |
52. | K. Imasato, M. Wood, J. J. Kuo and G. J. Snyder, J. Mater. Chem. A, 2018, 6, 19941 |
53. | M. Wood, K. Imasato, S. Anand, J. Yang and G. J. Snyder, J. Mater. Chem. A, 2020, 8, 2033 |
54. | F. Jiang, T. Feng, Y. Zhu, Z. Han, R. Shu, C. Chen, Y. Zhang, C. Xia, X. Wu, H. Yu, C. Liu, Y. Chen and W. Liu, Mater. Today Phys., 2022, 27, 100835 |
55. | Z. J. Han, Z. G. Gui, Y. B. Zhu, P. Qin, B. P. Zhang, W. Q. Zhang, L. Huang and W. S. Liu, Research, 2020, 2020, 1672051 |
56. | X. X. Chen, J. B. Zhu, D. D. Qin, N. Qu, W. H. Xue, Y. M. Wang, Q. Zhang, W. Cai, F. K. Guo and J. H. Sui, Sci. China Mater., 2021, 64, 1761 |
57. | A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch, UK, 1956, pp 36-73. |
58. | A. F. Ioffe, Physics of Semiconductors, Izd. AN SSSR, Russian, 1957. |
59. | J. Zhang, L. Song, S. H. Pedersen, H. Yin, L. T. Hung and B. B. Iversen, Nat. Commun., 2017, 8, 13901 |
60. | X. M. Shi, T. T. Zhao, X. Y. Zhang, C. Sun, Z. W. Chen, S. Q. Lin, W. Li, H. Gu and Y. Z. Pei, Adv. Mater., 2019, 31, 1903387 |
61. | L. R. Jørgensen, J. Zhang, C. B. Zeuthen and B. B. Iversen, J. Mater. Chem. A, 2018, 6, 17171 |
62. | X. Wu, Y. Lin, Z. Han, H. Li, C. Liu, Y. Wang, P. Zhang, K. Zhu, F. Jiang, J. Huang, H. Fan, F. Cheng, B. Ge and W. Liu, Adv. Energy Mater., 2022, 12, 2203039 |
63. | A. R. Li, P. F. Nan, Y. C. Wang, Z. H. Gao, S. Y. Zhang, Z. K. Han, X. B. Zhao, B. H. Ge, C. G. Fu and T. J. Zhu, Acta Mater., 2022, 239, 118301 |
64. | K. Xiong, W. Wang, H. N. Alshareef, R. P. Gupta, J. B. White, B. E. Gnade and K. Cho, J. Phys. D: Appl. Phys., 2010, 43, 115303 |
65. | P. Jood, M. Ohta, A. Yamamoto and M. G. Kanatzidis, Joule, 2018, 2, 1339 |
66. | L. Chen, R. Liu and X. Shi, Thermoelectric Materials and Devices, 2021, 221 |
67. | M. Ohta, P. Jood, M. Murata, C. H. Lee, A. Yamamoto and H. Obara, Adv. Energy Mater., 2018, 9, 1801304 |
68. | W. S. Liu, H. Z. Wang, L. J. Wang, X. W. Wang, G. Joshi, G. Chen and Z. F. Ren, J. Mater. Chem. A, 2013, 1, 13093 |
69. | Y. Lin, X. Wu, Y. Li, F. Cheng, W. Liu and B. Ge, Nano Energy, 2022, 102, 107736 |
70. | Y. Sun, L. Yin, Z. Zhang, H. He, C. Chen, S. Li, L. Chen, J. Jia, X. Wang, J. Sui, X. Liu, J. Mao, F. Cao and Q. Zhang, Acta Mater., 2022, 235, 118066 |
71. | Zhongxin Liang, Liangzi Deng, Xin Shi, Shaowei Song, Congcong Xu, Ching-Wu Chu and Z. Ren, Materials Today Energy, 2022, 29, 101099 |
72. | P. Ying, H. Reith, K. Nielsch and R. He, Small, 2022, 18, 2201183 |
73. | Hi-Z Thermoelectric Generator Products, HZ-2, https://hi-z.com/, (accessed 22.09, 2022). |
74. | Z. Liang, C. Xu, S. Song, X. Shi, W. Ren and Z. Ren, Adv. Funct. Mater., 2023, 33, 2210016 |
75. | L.-D. Zhao, B.-P. Zhang, J.-F. Li, M. Zhou, W.-S. Liu and J. Liu, J. Alloys Compd., 2008, 455, 259 |
76. | J.-F. Li, S. Tanaka, T. Umeki, S. Sugimoto, M. Esashi and R. Watanabe, Sensors and Actuators A: Physical, 2003, 108, 97 |
77. | Q. Xu, B. Deng, L. Zhang, S. Lin, Z. Han, Q. Zhou, J. Li, Y. Zhu, F. Jiang, Q. Li, P. Zhang, X. Zhang, G. Chen and W. Liu, Cell Rep. Phys. Sci., 2022, 3, 100780 |
78. | P. Zhang, B. Deng, K. Zhu, Q. Zhou, S. Zhang, W. Sun, Z. Zheng and W. Liu, EcoMat, 2022, 4, e12253 |
79. | J. C. Ordonez and C. Ordonez, 2021 IEEE Conference on Technologies for Sustainability (SusTech), Irvine, CA, USA (April 2021). |
80. | L. P. R. Nadimuthu and K. Victor, Environmental Science and Pollution Research, 2022, 29, 23767 |
81. | S. M. Pourkiaei, M. H. Ahmadi, M. Sadeghzadeh, S. Moosavi, F. Pourfayaz, L. Chen, M. A. Pour Yazdi and R. Kumar, Energy, 2019, 186, 115849 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Publications and b ZTave vs. Year. Literature results[9,18,20,26-28,30-34,36,38,41-56] are included for comparison.
a The initial values of σs and b ρc of the TEiM/TEcM interfaces near room temperatures. Literature results[10, 18, 20, 29, 30, 34-37, 62] are included for comparison.[58] Copyright 2022, Wiley-VCH.
Th-dependent a ωmax and b ηmax. Literature results are included for comparison[18-20,26-38,48,62,72-74].
Th-dependent ΔTmax. Literature results are included for comparison[9,10,20,73].