Citation: | Archana K. Munirathnappa, Hyungseok Lee, In Chung. Recent advances in ultrahigh thermoelectric performance material SnSe[J]. Materials Lab, 2023, 2(1): 220056. doi: 10.54227/mlab.20220056 |
This perspective discusses the surprising discovery and development of SnSe thermoelectrics. Undoped, hole-doped, and electron-doped SnSe single crystals have successively represented an extraordinarily high thermoelectric figure of merit (
1. | G. Tan, L.-D. Zhao and M. G. Kanatzidis, Chem. Rev., 2016, 116, 12123 |
2. | Y. K. Lee, K. Ahn, J. Cha, C. Zhou, H. S. Kim, G. Choi, S. I. Chae, J.-H. Park, S.-P. Cho, S. H. Park, Y.-E. Sung, W. B. Lee, T. Hyeon and I. Chung, J. Am. Chem. Soc., 2017, 139, 10887 |
3. | D. B. Gingerich and M. S. Mauter, Environ. Sci. Technol., 2015, 49, 8297 |
4. | L.-D. Zhao, J. He, C.-I. Wu, T. P. Hogan, X. Zhou, C. Uher, V. P. Dravid and M. G. Kanatzidis, J. Am. Chem. Soc., 2012, 134, 7902 |
5. | L. Xie, D. He and J. He, Mater. Horizons, 2021, 8, 1847 |
6. | D. Champier, Energy Convers. Manag., 2017, 140, 167 |
7. | L.-D. Zhao, C. Chang, G. Tan and M. G. Kanatzidis, Energy Environ. Sci., 2016, 9, 3044 |
8. | L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, Nature, 2014, 508, 373 |
9. | L. Su, D. Wang, S. Wang, B. Qin, Y. Wang, Y. Qin, Y. Jin, C. Chang and L.-D. Zhao, Science, 2022, 375, 1385 |
10. | G. Tan, F. Shi, S. Hao, L.-D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, Nat. Commun., 2016, 7, 12167 |
11. | Z.-Z. Luo, S. Cai, S. Hao, T. P. Bailey, Y. Luo, W. Luo, Y. Yu, C. Uher, C. Wolverton, V. P. Dravid, Z. Zou, Q. Yan and M. G. Kanatzidis, Energy Environ. Sci., 2022, 15, 368 |
12. | Z.-Z. Luo, S. Cai, S. Hao, T. P. Bailey, I. Spanopoulos, Y. Luo, J. Xu, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan and M. G. Kanatzidis, Angew. Chem. Int. Ed., 2021, 60, 268 |
13. | W. Liu, T. Hong, S. Dong, D. Wang, X. Gao, Y. Xiao and L.-D. Zhao, Mater. Today Energy, 2022, 26, 100983 |
14. | G. Tan, S. Hao, S. Cai, T. P. Bailey, Z. Luo, I. Hadar, C. Uher, V. P. Dravid, C. Wolverton and M. G. Kanatzidis, J. Am. Chem. Soc., 2019, 141, 4480 |
15. | Y. Zhu, D. Wang, T. Hong, L. Hu, T. Ina, S. Zhan, B. Qin, H. Shi, L. Su, X. Gao and L.-D. Zhao, Nat. Commun., 2022, 13, 4179 |
16. | J. M. Hodges, S. Hao, J. A. Grovogui, X. Zhang, T. P. Bailey, X. Li, Z. Gan, Y.-Y. Hu, C. Uher, V. P. Dravid, C. Wolverton and M. G. Kanatzidis, J. Am. Chem. Soc., 2018, 140, 18115 |
17. | P. Xu, W. Zhao, X. Liu, B. Jia, J. He, L. Fu and B. Xu, Adv. Mater., 2022, 34, 2202949 |
18. | L. Fu, M. Yin, D. Wu, W. Li, D. Feng, L. Huang and J. He, Energy Environ. Sci., 2017, 10, 2030 |
19. | M. Dutta, R. K. Biswas, S. K. Pati and K. Biswas, ACS Energy Lett., 2021, 6, 1625 |
20. | K. Ahn, K. Biswas, J. He, I. Chung, V. Dravid and M. G. Kanatzidis, Energy Environ. Sci., 2013, 6, 1529 |
21. | C. Zhou, Y. Yu, Y.-L. Lee, B. Ge, W. Lu, O. Cojocaru-Mirédin, J. Im, S.-P. Cho, M. Wuttig, Z. Shi and I. Chung, J. Am. Chem. Soc., 2020, 142, 15172 |
22. | Y. Tang, Z. M. Gibbs, L. A. Agapito, G. Li, H.-S. Kim, Marco B. Nardelli, S. Curtarolo and G. J. Snyder, Nat. Mater., 2015, 14, 1223 |
23. | B. Jiang, W. Wang, S. Liu, Y. Wang, C. Wang, Y. Chen, L. Xie, M. Huang and J. He, Science, 2022, 377, 208 |
24. | C. Zhou and I. Chung, Coord. Chem. Rev., 2020, 421, 213437 |
25. | D. Sarkar, M. Samanta, T. Ghosh, K. Dolui, S. Das, K. Saurabh, D. Sanyal and K. Biswas, Energy Environ. Sci., 2022, 15, 4625 |
26. | S. Perumal, M. Samanta, T. Ghosh, U. S. Shenoy, A. K. Bohra, S. Bhattacharya, A. Singh, U. V. Waghmare and K. Biswas, Joule, 2019, 3, 2565 |
27. | D. Sarkar, T. Ghosh, S. Roychowdhury, R. Arora, S. Sajan, G. Sheet, U. V. Waghmare and K. Biswas, J. Am. Chem. Soc., 2020, 142, 12237 |
28. | S. Roychowdhury, T. Ghosh, R. Arora, U. V. Waghmare and K. Biswas, Angew. Chem. Int. Ed., 2018, 57, 15167 |
29. | P. Larson, S. D. Mahanti, J. Salvador and M. G. Kanatzidis, Phys. Rev. B, 2006, 74, 035111 |
30. | M. Ohta, K. Biswas, S.-H. Lo, J. He, D. Y. Chung, V. P. Dravid and M. G. Kanatzidis, Adv. Energy Mater., 2012, 2, 1117 |
31. | R. Amatya and R. J. Ram, J. Electron. Mater., 2012, 41, 1011 |
32. | L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton and M. G. Kanatzidis, Science, 2016, 351, 141 |
33. | C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.-F. Li, J. He and L.-D. Zhao, Science, 2018, 360, 778 |
34. | C. Chang, D. Wang, D. He, W. He, F. Zhu, G. Wang, J. He and L.-D. Zhao, Adv. Energy Mater., 2019, 9, 1901334 |
35. | C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z.-Z. Luo, H. Lee, B. Ge, Y.-L. Lee, X. Chen, J. Y. Lee, O. Cojocaru-Mirédin, H. Chang, J. Im, S.-P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis and I. Chung, Nat. Mater., 2021, 20, 1378 |
36. | K. Sraitrova, J. Cizek, V. Holy, T. Plechacek, L. Benes, M. Jarosova, V. Kucek and C. Drasar, Phys. Rev. B, 2019, 99, 035306 |
37. | S. Byun, J. Cha, C. Zhou, Y. K. Lee, H. Lee, S. H. Park, W. B. Lee and I. Chung, J. Solid State Chem., 2019, 269, 396 |
38. | R. Deng, X. Su, Z. Zheng, W. Liu, Y. Yan, Q. Zhang, V. P. Dravid, C. Uher, M. G. Kanatzidis and X. Tang, Sci. Adv., 2018, 4, eaar5606 |
39. | B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu and J. He, Energy Environ. Sci., 2020, 13, 2106 |
40. | S. H. Park, Y. Jin, J. Cha, K. Hong, Y. Kim, H. Yoon, C.-Y. Yoo and I. Chung, ACS Appl. Energy Mater., 2018, 1, 1603 |
41. | G. Nie, S. Suzuki, T. Tomida, A. Sumiyoshi, T. Ochi, K. Mukaiyama, M. Kikuchi, J. Q. Guo, A. Yamamoto and H. Obara, J. Electron. Mater., 2017, 46, 2640 |
42. | L. Su, T. Hong, D. Wang, S. Wang, B. Qin, M. Zhang, X. Gao, C. Chang and L.-D. Zhao, Mater. Today Phys., 2021, 20, 100452 |
43. | S. Li, X. Lou, X. Li, J. Zhang, D. Li, H. Deng, J. Liu and G. Tang, Chem. Mater., 2020, 32, 9761 |
44. | Y.-L. Lee, H. Lee, T. Kim, S. Byun, Y. K. Lee, S. Jang, I. Chung, H. Chang and J. Im, J. Am. Chem. Soc., 2022, 144, 13748 |
45. | Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder, Nature, 2011, 473, 66 |
46. | K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature, 2012, 489, 414 |
47. | L.-D. Zhao, S. Hao, S.-H. Lo, C.-I. Wu, X. Zhou, Y. Lee, H. Li, K. Biswas, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, J. Am. Chem. Soc., 2013, 135, 7364 |
48. | L.-D. Zhao, J. He, S. Hao, C.-I. Wu, T. P. Hogan, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, J. Am. Chem. Soc., 2012, 134, 16327 |
49. | G. Tan, L.-D. Zhao, F. Shi, J. W. Doak, S.-H. Lo, H. Sun, C. Wolverton, V. P. Dravid, C. Uher and M. G. Kanatzidis, J. Am. Chem. Soc., 2014, 136, 7006 |
50. | D. Ibrahim, J. B. Vaney, S. Sassi, C. Candolfi, V. Ohorodniichuk, P. Levinsky, C. Semprimoschnig, A. Dauscher and B. Lenoir, Appl. Phys. Lett., 2017, 110, 032103 |
51. | Z.-G. Chen, X. Shi, L.-D. Zhao and J. Zou, Prog. Mater. Sci., 2018, 97, 283 |
52. | P. Turkes, C. Pluntke and R. Helbig, J. Phys. C, 1980, 13, 4941 |
53. | S. A. Miller, P. Gorai, U. Aydemir, T. O. Mason, V. Stevanović, E. S. Toberer and G. J. Snyder, J. Mater. Chem. C, 2017, 5, 8854 |
54. | Y. Li, B. He, J. P. Heremans and J.-C. Zhao, J. Alloys Compd., 2016, 669, 224 |
55. | Y.-X. Chen, Z.-H. Ge, M. Yin, D. Feng, X.-Q. Huang, W. Zhao and J. He, Adv. Funct. Mater., 2016, 26, 6836 |
56. | G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du and L.-D. Zhao, J. Am. Chem. Soc., 2016, 138, 13647 |
57. | S. Chandra and K. Biswas, J. Am. Chem. Soc., 2019, 141, 6141 |
58. | C. Chang, Q. Tan, Y. Pei, Y. Xiao, X. Zhang, Y.-X. Chen, L. Zheng, S. Gong, J.-F. Li, J. He and L.-D. Zhao, RSC Adv., 2016, 6, 98216 |
59. | J. Cai, Y. Zhang, Y. Yin, X. Tan, S. Duan, G.-Q. Liu, H. Hu, Y. Xiao, Z. Ge and J. Jiang, J. Mater. Chem. C, 2020, 8, 13244 |
60. | Z.-H. Ge, Y. Qiu, Y.-X. Chen, X. Chong, J. Feng, Z.-K. Liu and J. He, Adv. Funct. Mater., 2019, 29, 1902893 |
61. | S. Chandra, U. Bhat, P. Dutta, A. Bhardwaj, R. Datta and K. Biswas, Adv. Mater., 2022, 34, 2203725 |
62. | Y. K. Lee, Z. Luo, S. P. Cho, M. G. Kanatzidis and I. Chung, Joule, 2019, 3, 719 |
63. | B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, Science, 2008, 320, 634 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Crystal structure of orthorhombic SnSe (Pnma) along the b-axis. b Highly distorted SnSe7 polyhedron with three short (solid lines) and four long Sn-Se bonds (dashed lines). c Experimental ZT values of undoped and doped SnSe single crystals. Open black squares, filled black circles and open black triangles represent undoped SnSe along the a-, b-, and c-axis, respectively.[8] Blue diamonds, Br-doped SnSe with carrier concentration of ~1.2 × 1019 cm-3.[33] Red pentagons, 3% Br-doped SnSe with 12% PbSe alloying.[34]
Temperature-dependent a electrical conductivity, b Seebeck coefficient of undoped SnSe[8] and hole-doped SnSe[32] along the a-, b- and c-axes. c Schematic illustration of the multi-valence bands of SnSe. d The comparison of power factor of undoped SnSe crystal,[8] hole-doped SnSe crystal,[32] Bi2-xSbxTe3,[63] and PbTe alloyed with 4 mol% SrTe and doped with 2 mol% Na.[46] e Thermal diffusivities of polycrystalline SnSe with and without SnO2 with respect to temperature. For comparison, thermal diffusivities of single crystal SnSe along the three different axial directions are also given.[7] Copyright 2016, Royal Society of Chemistry.
A schematic illustration of the SnOx-removal process involving ball milling and H2-reduction and its effects on thermoelectric properties of the polycrystalline SnSe-based materials.[62] Copyright 2019, Elsevier.
a Typical image of Sn ingot after H2-chemical reduction and subsequent melting-purification for 6 h at
A schematic illustration of the two-step purification process for the surface SnOx removal in the polycrystalline SnSe to achieve high TE performance.[35] Copyright 2021, Springer Nature.
a The κlat for the untreated SnSe, H2-reduced SnSe with no Sn purification, and purified SnSe samples. b The κlat of the purified NaxSn0.995-xSe (x = 0.01, 0.02, and 0.03) samples in comparison with that of the untreated and purified SnSe samples. The κlat of single crystal SnSe along the a-axis is shown for comparison. c The κtot of the purified Na0.03Sn0.965Se calculated by the experimental Cp by DSC and the derived Cp values from the literature.[32] d ZT values of the purified Na0.03Sn0.965Se (filled red) polycrystalline sample taken parallel to the SPS pressing direction and the current state-of-the-art polycrystalline materials such as 2% Na doped PbTe-8%SrTe (filled pink),[10] SnSe-5% PbSe (filled green)[62] as well as undoped single crystal SnSe (p-type, open orange),[8] Na-doped single crystal SnSe (p-type, open blue)[32] and Br-doped single crystal SnSe (open black).[33] Copyright 2021, Springer Nature.[35]